#### 業 Toloka



# Improving Web Ranking with Human-in-the-Loop: Methodology, Scalability, Evaluation

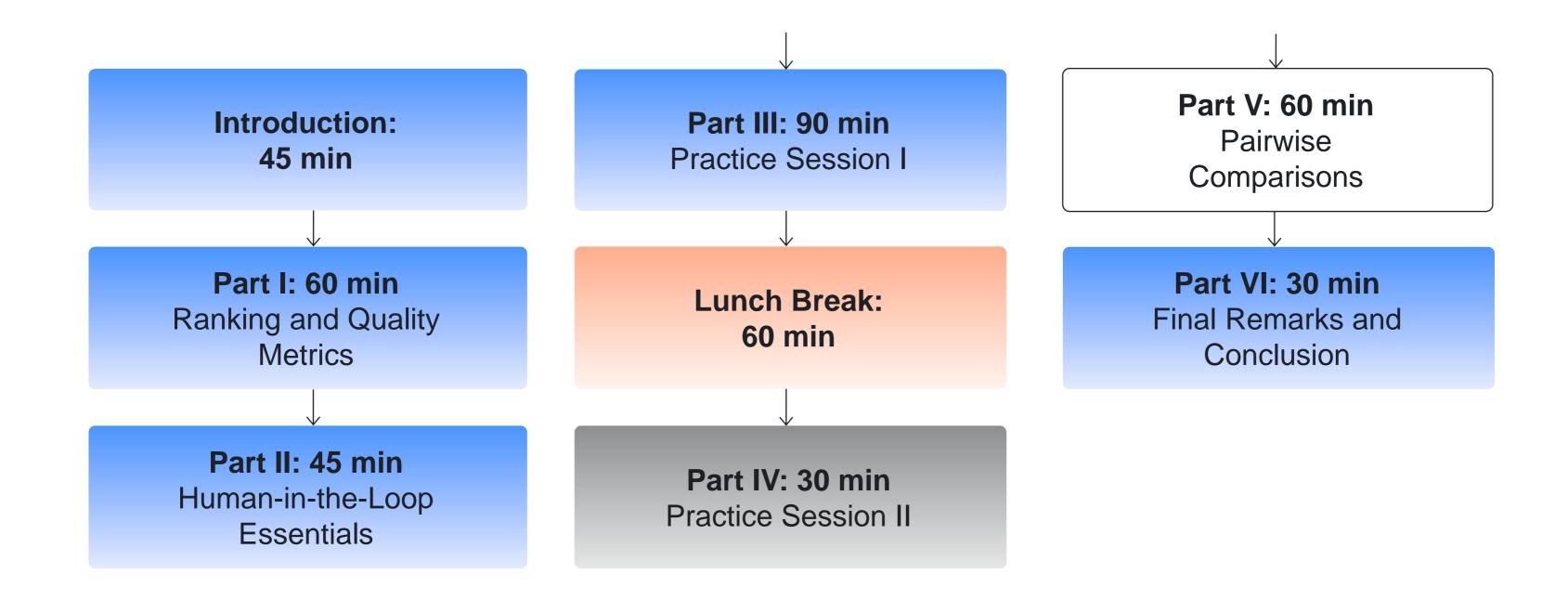
Alexey Drutsa, Dmitry Ustalov, Nikita Popov, Daria Baidakova



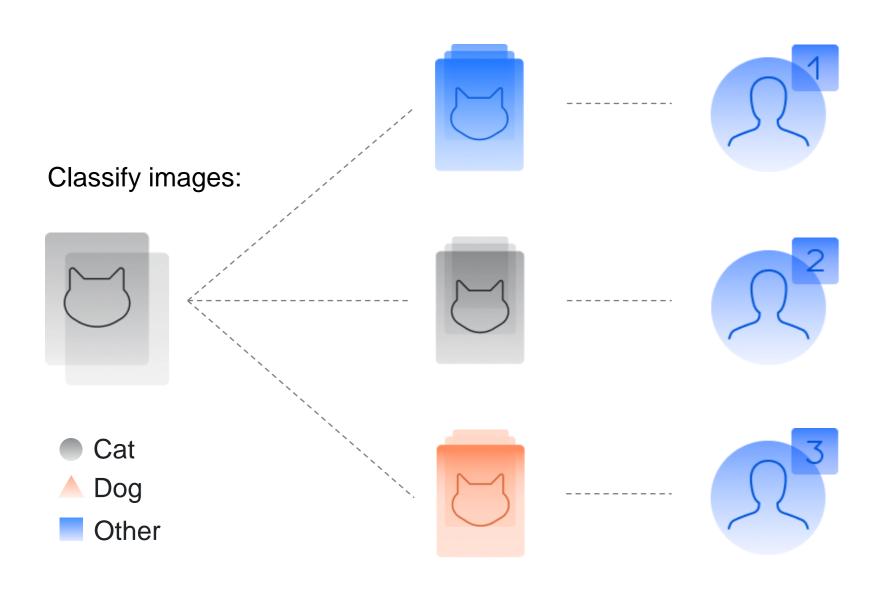
## Part V Pairwise Comparisons

Dmitry Ustalov, Analyst/Software Developer

#### Tutorial schedule

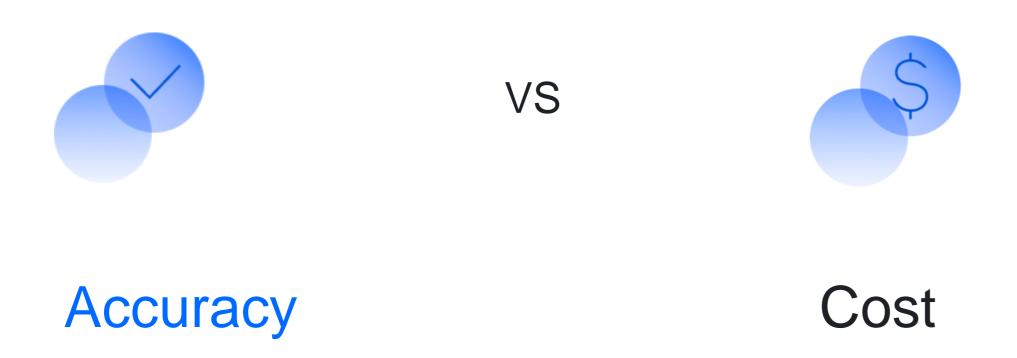


#### Labelling Data with Crowdsourcing



- ► How to choose a reliable label?
- How many performers per object?
- How much to pay to performers?
- **...**

#### Evaluation of Labelling Approaches



- ► Labels with a maximal level of accuracy for a given budget or
- ► Labels of a chosen accuracy level for a minimal budget

#### Difference from Multiclassification

► The latent label assumption is not satisfied when comparing complex items



Different tasks may contain common items



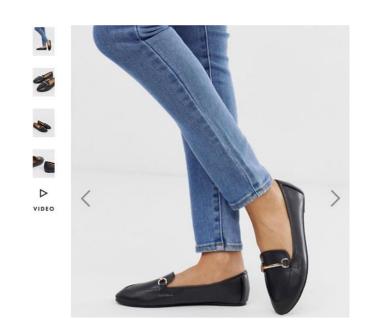




#### Task: Compare Items

Which shoes look more similar to the one in the picture?







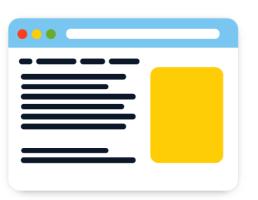
Right

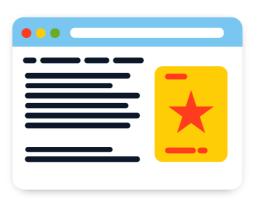


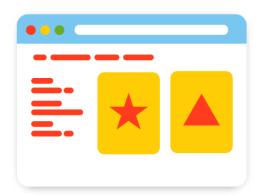
## Aggregating Pairwise Comparisons

#### Notation

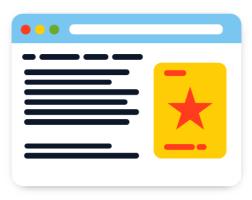
- ► Answers: Left or Right
- ► Items  $d_i \in \{1, ..., N\}$  E.g.:

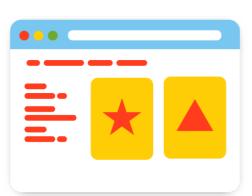






► Tasks:





Choose a better item: Left Right

► Performers  $w \in \{1, ..., W\}$  E.g.:



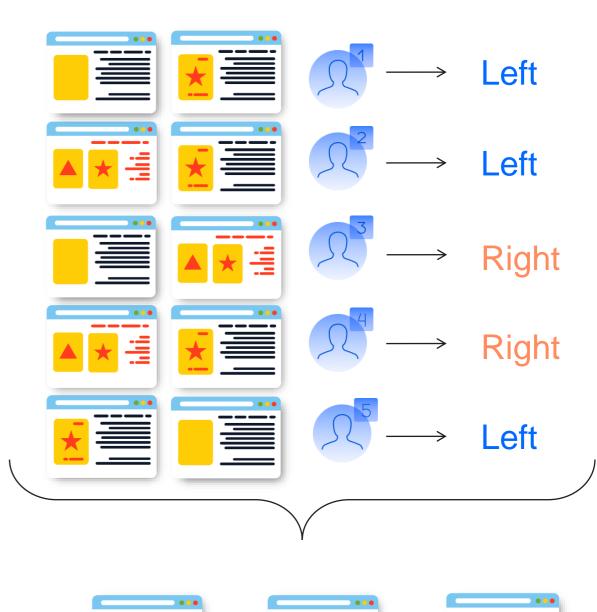
#### Formalization

#### Ranking from pairwise comparisons:

► Given pairwise comparisons for items in *D*:

$$P = \{(w_k, d_i, d_j): i \succ_k j\}$$

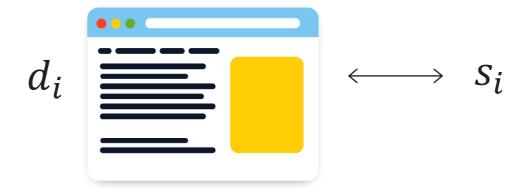
▶ Obtain a ranking  $\pi$  over items  $D \rightarrow \{1, ..., N\}$  based on answers in P





#### Bradley and Terry Model (BT)

Assume that each item  $d_i \in D$  has a latent "quality" score  $s_i \in \mathbb{R}$ 



▶ The probability that  $d_i \in D$  will be preferred in a comparison over  $d_j \in D$ 

$$\Pr(i > j) = f(s_i - s_j)$$
, where  $f(x) = \frac{1}{1 + e^{-x}}$ .

#### Bradley and Terry Model: Example

| Performer      | Task           | Left | Right |
|----------------|----------------|------|-------|
| $W_1$          | t <sub>1</sub> | a    | b     |
| $\mathbf{W}_1$ | $t_2$          | b    | С     |
| $\mathbf{W}_1$ | $t_3$          | С    | a     |
| $W_2$          | t <sub>1</sub> | a    | b     |
| $W_2$          | $t_2$          | b    | С     |
| $W_2$          | $t_3$          | C    | а     |

| Item | Score |
|------|-------|
| а    | 0.592 |
| b    | 0.278 |
| С    | 0.130 |

The model assumes that all performers are equally good and truthful!

#### NoisyBT Model: Parameterization of Performers

$$w_k$$
 "reliability"  $\gamma_k$  and "bias"  $q_k$ 

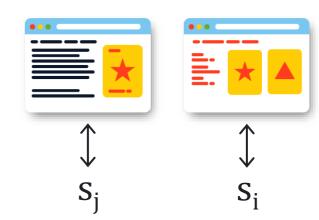
► The probability that w reads task is

$$\Pr(w_k \text{ reads a task}) = f(y_k) \leftarrow \text{Logistic function}$$

▶ If  $w_k$  reads a task, she answers according to scores:

$$(f(s_i - s_j), f(s_j - s_i))$$

Probability to choose Left if compares items



▶ If  $w_k$  does not read a task, she answers according to her bias

$$f(q_k), f(-q_k)$$

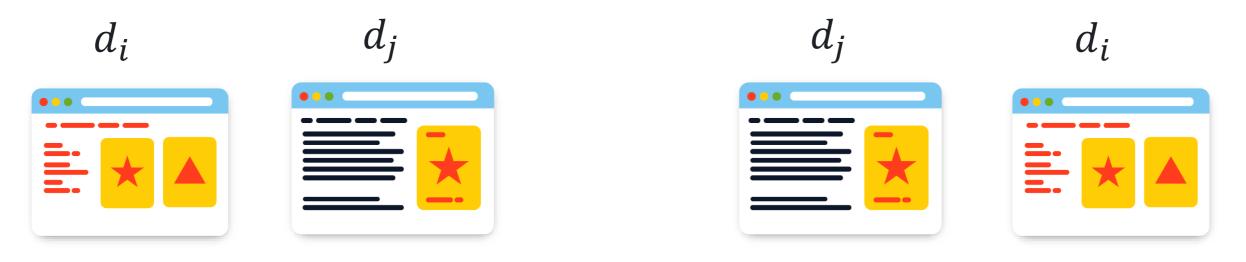
Probability to choose Left if answers randomly

#### NoisyBT: Answer Likelihood

The likelihood of  $i >_k j$  is

$$\Pr(i \succ_k j) = \underbrace{f(\gamma_k)f(s_i - s_j)} + \underbrace{(1 - f(\gamma_k))f((-1)^{(1 - \mathbb{I}(d_i \text{ was left}))}q_k)}_{\text{Random answer}},$$

where  $\mathbb{I}(d_i \text{ was left})$  is the indicator for the order of  $d_i$  and  $d_j$ 



$$\mathbb{I}(d_i \text{ was left}) = 1$$

$$\mathbb{I}(d_i \text{ was left}) = 0$$

#### NoisyBT: Parameter Estimation

Likelihood of observed comparisons:

$$T(s, q, \gamma) = \sum_{(w_k, d_i, d_j) \in P} \log \Pr(i \succ_k j) =$$

$$\sum_{(w_k,d_i,d_j)\in P} \log[f(\gamma_k)f(s_i-s_j) + (1-f(\gamma_k))f((-1)^{(1-\mathbb{I}(d_i \text{ was left}))}q_k)]$$

 $\triangleright$   $\{s_i\}_{i=1,...,N}$  and  $\{\gamma_k, q_k\}_{k=1,...,W}$  are inferred by maximizing the log-likelihood:

$$T(s,q,\gamma) \to \max_{\{s_i,\gamma_k,q_k\}}$$

▶ To obtain a ranking  $\pi$  over items, sort items according to their scores

#### NoisyBT: Example

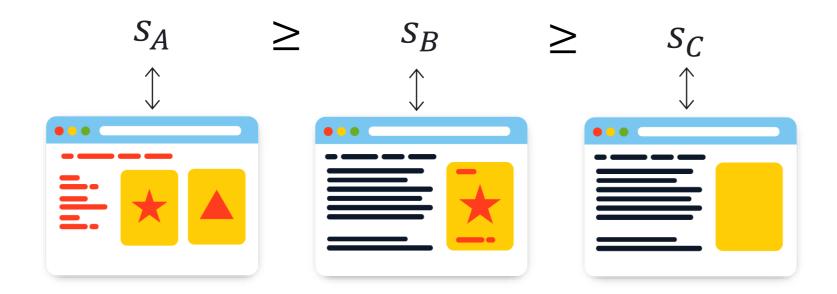
| Performer | Task           | Left | Right |
|-----------|----------------|------|-------|
| $W_1$     | t <sub>1</sub> | a    | b     |
| $W_1$     | $t_2$          | b    | С     |
| $W_1$     | $t_3$          | С    | a     |
| $W_2$     | t <sub>1</sub> | a    | b     |
| $W_2$     | $t_2$          | b    | С     |
| $W_2$     | $t_3$          | C    | а     |

| Item | Score |
|------|-------|
| а    | 1.000 |
| b    | 0.547 |
| С    | 0.000 |

| Performer | Bias  | Skill |
|-----------|-------|-------|
| $W_1$     | 0.633 | 0.656 |
| $W_1$     | 1.000 | 0.000 |

#### Summary about NoisyBT

► Latent scores models for ranking from pairwise comparisons:



► To reduce bias from unreliable answers parameterize workers

$$w_k$$
 "reliability"  $\gamma_k$  and "bias"  $q_k$ 

# Demo

#### Demo

- ► We will learn how to aggregate your results using the Bradley-Terry model **right now**
- ► We will show you a live demo
- ➤ This demo will use the annotated data from the practice session that will be aggregated to provide the final rankings
- ▶ Please use a blank Jupyter Notebook, e.g., https://colab.research.google.com/ or the local one

#### Crowd-Kit: <a href="https://github.com/Toloka/crowd-kit">https://github.com/Toloka/crowd-kit</a>

Crowd-Kit is an open source Python library that implements methods for quality control in crowdsourcing.

- It is platform-agnostic, so can be used with any crowdsourcing platform
- ▶ It includes efficient implementations of classic and state-of-the-art methods for quality control
- ► It provides a simple API for using them in your application and is available on PyPI: pip install crowd-kit

#### NoisyBT with Crowd-Kit: Input

```
import pandas as pd # pip install pandas
from crowdkit.aggregation import NoisyBradleyTerry # pip install -U crowd-kit
# In this example we will use the annotation results in the Toloka TSV format,
# but Crowd-Kit is platform-agnostic and it can handle any other format
df = pd.read csv('assignments.tsv', sep='\t', dtype=str)
df.drop(df[~df['OUTPUT:result'].isin({'L', 'R'})].index, inplace=True)
# We need to reorganize our data frame to contain the following columns:
# query, performer, left, right, label
```

#### NoisyBT with Crowd-Kit: Rename

```
df['performer'] = df['ASSIGNMENT:worker id']
df['left'] = list(zip(df['INPUT:query'], df['INPUT:link left']))
df['right'] = list(zip(df['INPUT:query'], df['INPUT:link right']))
df.loc[df['OUTPUT:result'] == 'L', 'label'] = \
       df.loc[df['OUTPUT:result'] == 'L', 'left']
df.loc[df['OUTPUT:result'] == 'R', 'label'] = \
       df.loc[df['OUTPUT:result'] == 'R', 'right']
```

#### NoisyBT with Crowd-Kit: Apply and Output

```
bt = NoisyBradleyTerry(n iter=5000)
result = bt.fit predict(df)
index = pd.MultiIndex.from tuples(result.index)
df result = pd.DataFrame(result, columns=['score'], index=index)
df result['query'] = result.index.str[0]
df result['url'] = result.index.str[1]
df result.reset index(drop=True, inplace=True)
df result.sort values(['query', 'score'], ascending=[True, False],
inplace=True)
df result[['query', 'url', 'score']]
df result.to_csv('aggregated.tsv', sep='\t', index=False,
              columns=['query', 'url', 'score'])
```

#### Get Ready!

#### Conclusion

#### Conclusion

- Human-in-the-Loop improves Web ranking by gathering high-quality pairwise comparisons
- Aggregated rankings can be used for evaluating your service against data from the real users
- ► Crowd-Kit allows aggregating human judgements in a simple way: <a href="https://github.com/Toloka/crowd-kit">https://github.com/Toloka/crowd-kit</a> or pip install crowd-kit

### Thank you! Questions?

#### **Dmitry Ustalov**

Analyst/Software Developer



dustalov@yandex-team.ru



https://research.yandex.com/tutorials/crowd/www-2021