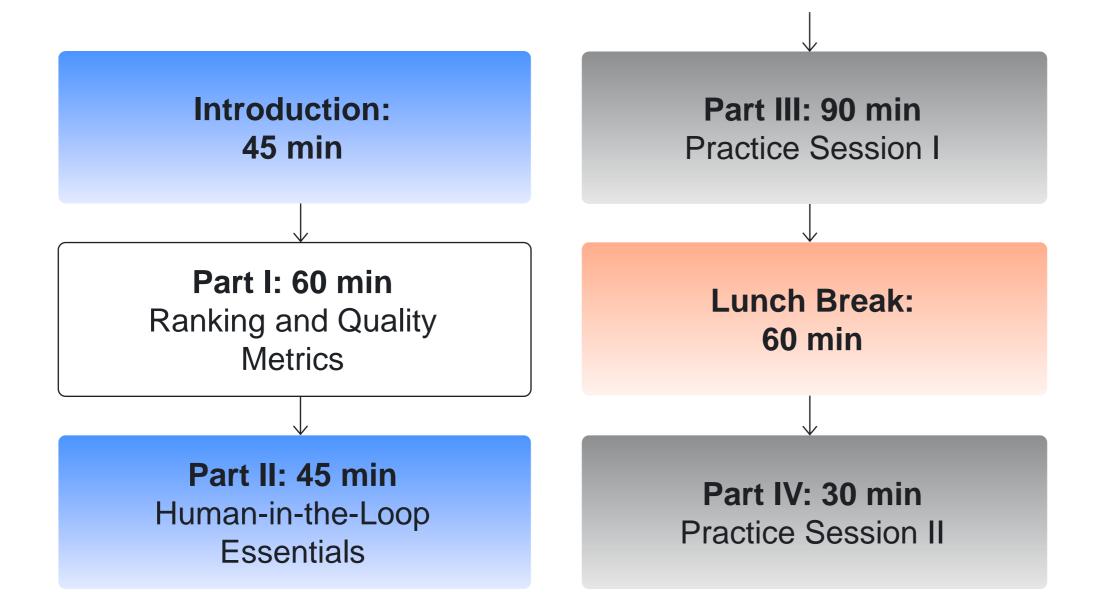


Improving Web Ranking with Human-in-the-Loop: Methodology, Scalability, Evaluation

Alexey Drutsa, Dmitry Ustalov, Nikita Popov, Daria Baidakova

WWW 2021 hands-on tutorial

Tutorial Schedule



Part V: 60 min Pairwise Comparisons

Part VI: 30 min Final Remarks and Conclusion

Part I Ranking and Quality Metrics

Nikita Popov, Search department

Plan

- 1. Introduction
- 2. Signals
- 3. Metrics 8. Datasets
- 4. How to sample queries

9. Literature

5. Examples

6. What can go wrong? 7. Why crowdsourcing?

Why Yandex Search uses offline quality evaluation?

- 1. Online is not enough:
- Implicit signal
- Delayed response
- Slow experimentation

7

2. DSAT (Dissatisfaction Analysis):

- Why users are dissatisfied
- What's exactly wrong with our service
- Insights for improvement

3. Users are prone to manipulation:

Fraud

Other manipulations

Why you might want offline

Baseline for product launch

Poor quality = zero retention

Detect malfunction before release

Saves money and reputation

Draw insights

Where and how to improve your service

Why you might need offline

DSAT

Explicit signal compared to online metrics

Spam, fraud detection

How to measure quality in offline setting?

Model

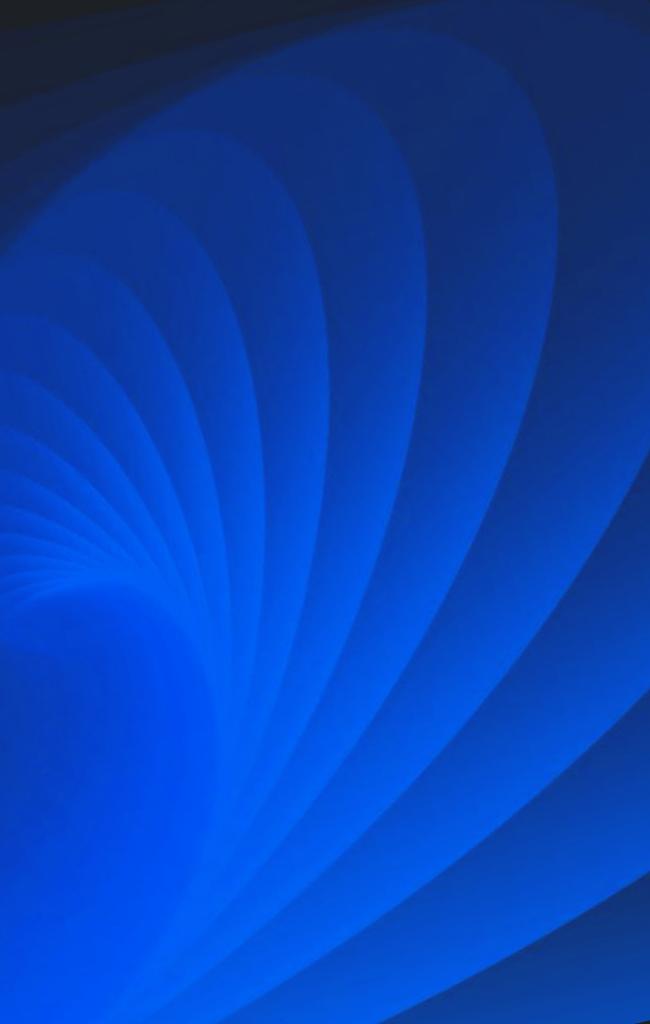
- \blacktriangleright Assume we have a user *u* who interacts with a service by sending some sort of a query q
- Service respondes to query q with array of objects r_1, \ldots, r_n (or a single object r_1)

Model

What we need to do

- 1. Evaluate every response object r_i with some quality measure s_i (create a signal)
- 2. Aggregate s_i to overall measure of quality (create a metric)

Signals



Model

Examples

2

Search engine

- Text search
- Image search
- Ecommerce goods search

Recommendations

- Music feed
- Content feed
- Social media feed

Moderation

- Service quality assurance
- Social media business account behavior

Signals

In order to calculate metric, we need to estimate response objects.

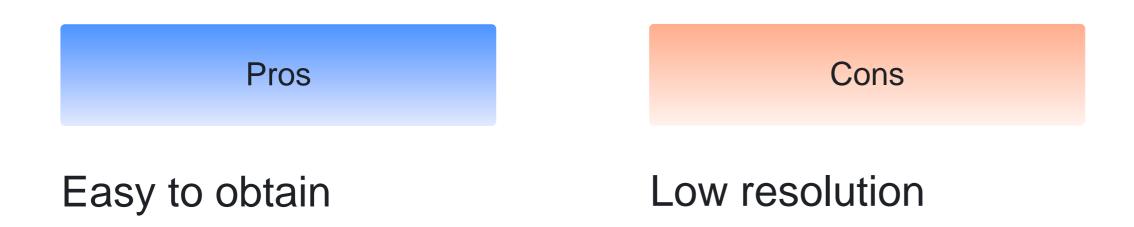
It can be done through multiple approaches

Pointwise

Signals are usually obtained through experts or crowdsource platforms, less commonly — from precomputed data

Pointwise

Given a query q and a single response r_i , we can judge how well does this object match to a user query



Pointwise

Examples

Binary relevance

► 1 or 0

Multiple grade relevance

- Relevant
- Semi-relevant
- ► Non-relevant
- ► Etc.

Match score from 0 to 100%

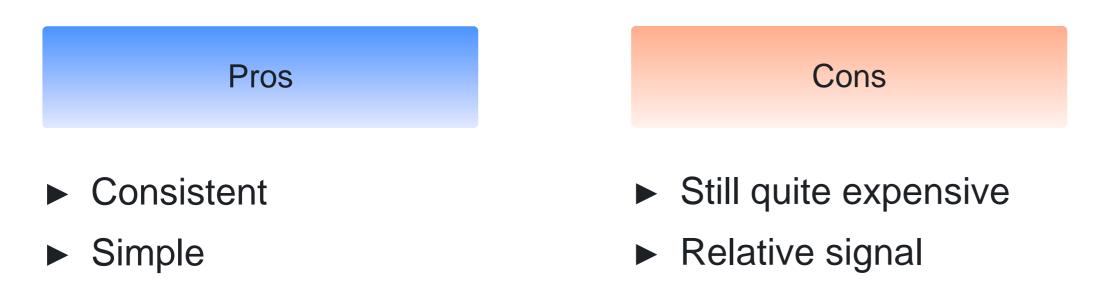
Listwise

Order all objects at once and use ranks as signal Useful in training ML algorithms



Pairwise

Pointwise — low resolution, listwise — inconsistent Pairwise¹ comparisons tackle both of this problems Perfect example of task decomposition



Pairwise

How to select pairs?

- Straightforward ~n^2 comparisons (all possible pairs)
- More efficient² \sim n log n (like sorting with quicksort)

Works well on noisy output

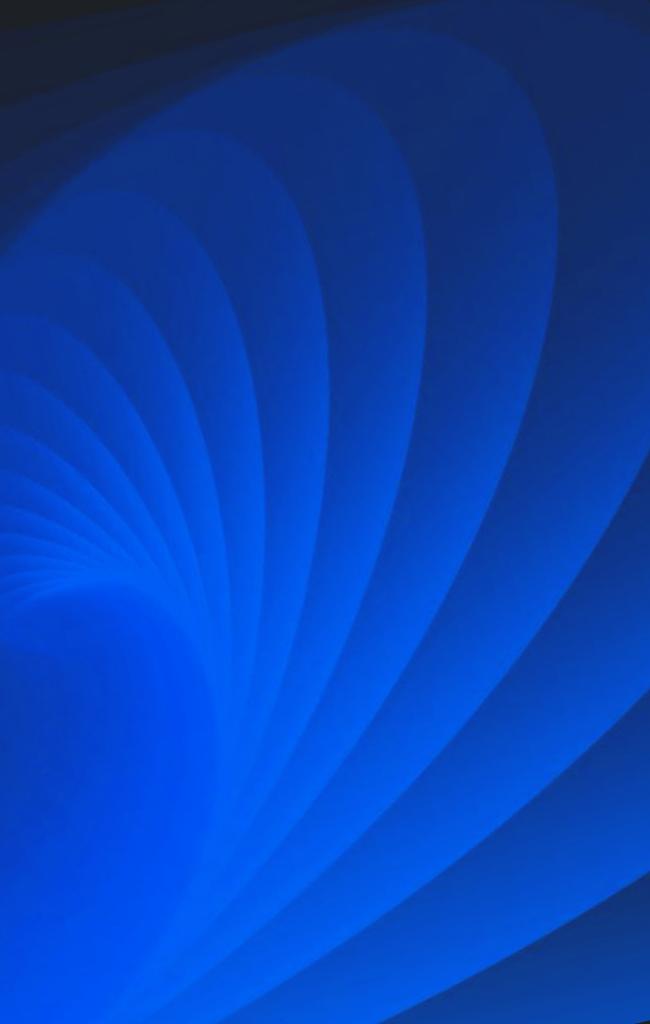
possible pairs) th quicksort)

Which one?

Which one to use?

- 1. In the beginning pointwise (baseline)
- 2. When you have a working service pairwise (for incremental improvements)

Metrics



From signal to metric — how to aggregate?

Ranking metrics

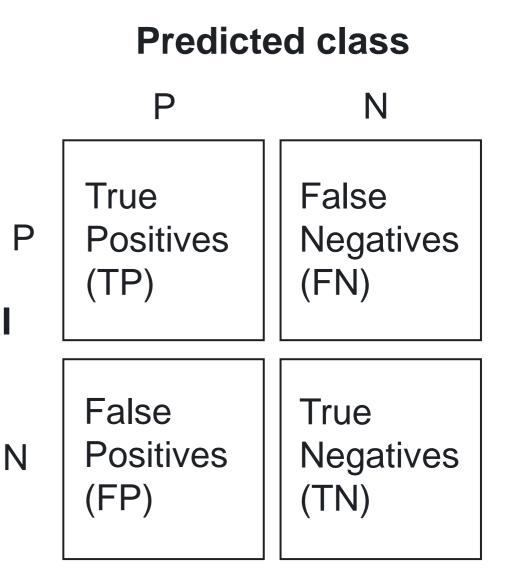
- 1. Mean Average Precision (mAP) measures trade-off between precision and recall going down through service response
- 2. Normalized Discounted Cumulative Gain (nDCG) measures quality of objects with discount factor
- 3. Expected Reciprocal Rank (ERR) cascade model of user interaction with service response

Let us recall some definitions from binary classifier ($s_i \in \{0, 1\}$):

$$Precision = \frac{TP}{TP + FP}$$

$$\operatorname{Recall} = \frac{TP}{TP + FN} \qquad \qquad \text{Actual} \\ \text{class}$$

Precision@k and Recall@k — precision and recall over top-k elements



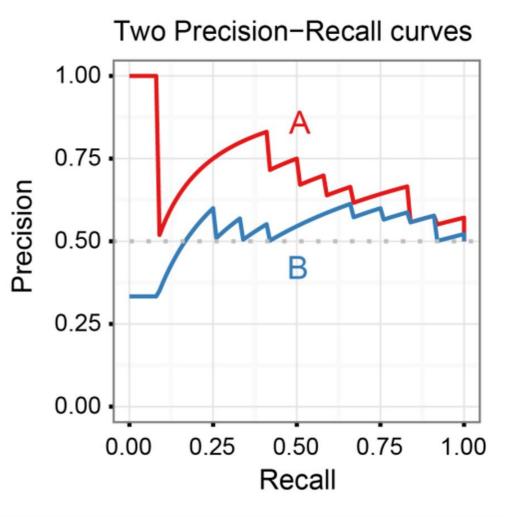
How precision and recall changes going down the list?

- 1. Recall increases (non-decreasing function)
- 2. Precision can be arbitrary

Area under precision-recall curve is:

- Maximum for perfect order (positive objects on top, negative on bottom)
- 2. Minimum for the worst order

We can define precision as function of recall p(r)



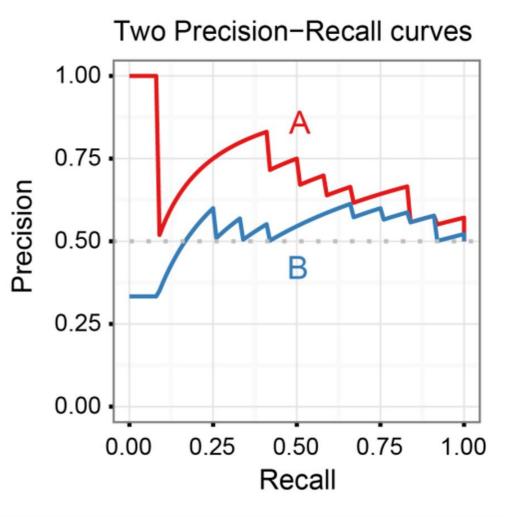
28

We can define Average Precision as following:

$$AP = \int_0^1 p(r) dr.$$

r — recall p(r) — precision

AP — area under precision-recall curve (**precision-recall AUC**)



29

In simple discrete case, previous equation can be transformed into:

$$AP = \sum_{i=1}^{n} Precision@i \cdot \Delta Recall@i,$$

where $\Delta Recall@i = Recall@i - Recall@(i-1)$

Since $\Delta Recall@i$ is positive iff included object is true positive, we can simplify AP to

$$AP = \frac{1}{n} \sum_{i=1}^{n} Precision@i[s_i = 1]$$

Mean average precision is defined as mean AP over set of queries

$$mAP = \frac{1}{Q} \sum_{q} AP(q)$$

1

- Good ranking best objects on top, deeper worse signal value
- Idea sum signal values of ordered response with some discounter
- Lower the object, less the impact on metric

We can define discounted cumulative gain (DCG³) as following:

$$DCG@k = \sum_{i=1}^{k} \frac{s_i}{d(i)},$$

where d(i) is a discounting factor

3. Cumulated gain-based evaluation of IR techniques https://doi.org/10.1145/582415.582418

Example of discounters:

Linear — *i*

Logarithmic — $\log_2(i+1)$ Exponential — 2^i

Raw DCG cannot be compared between queries, normalization is required

To align values of DCG we can normalized it by ideal DCG:

$$IDCG@k = \sum_{i=1}^{k} \frac{S(i)}{d(i)},$$

where $s_{(i)}$ is i-th object with largest signal available

Thus, nDCG is defined as following:

$nDCG@k = \frac{DCG@k}{IDCG@k}$

Now values are between 0 and 1 and thus cross-query comparable

mAP and nDCG metrics

- 1. Gain profit even on lower positions
- 2. When user has found answer, everything else doesn't matter

- of a ranker is

Improvement — cascade model

1. User go down the ranked list until he finds satisfying result

2. The lower user has to go, the worse performance

Yandex	expected reciprocal rank	\otimes	Search
	Web Images Video Maps		
	Expected reciprocal rank / Xa6p habr.com > ru/company/econtenta/blog/303458/ *		2 mill
	Expected Reciprocal Rank lingpipe-blog.com >zhangexpected-reciprocal-rank * 2009. Expected reciprocal rank for graded relevance Expected reciprocal rank is based on the cascade model of search (there are citations in the paper). Read more >		
	W Mean reciprocal rank - Wikipedia en.wikipedia.org > Mean reciprocal rank + The mean reciprocal rank is a statistic measure for evaluating any process that produces a list of possible responses to a sample of queries, ordered by probability of correctness. The reciprocal rank of a query response is the multiplicative inverse of the Read more >		
	(PDF) Expected reciprocal rank for graded relevance researchgate.net >Expected_reciprocal_rank_for * cal rank to the graded relevance case and we call this metric Expected Reciprocal For more than two correlation or matching levels for measuring a ranking result, the expected reciprocal rank [82] and normalized discounted cumulative gain Read more >		
	Expected reciprocal rank for graded relevance Proceedings dl.acm.org > doi/10.1145/1645953.1646033 * Home Conferences CIKM Proceedings CIKM '09 Expected reciprocal rank for graded relevance Rank-biased precision for measurement of retrieval effectiveness. ACM Trans. Inf. Read more >		
	Expected Reciprocal Rank for Graded Relevance - PDF docplayer.net > 20782422-Expected-reciprocal-rank * The Expected Reciprocal Rank is a cascade based metric with φ(r) = /r. It may not seem straightforward to compute ERR from the previous definition because there is an expectation. However it can easily be computed as follows: ERR := r= P Read more >		
	itnan.ru/post.php?c=1&p=303458 itnan.ru > post.php?c=1&p=303458 *		
	GitHub - skondo/evaluation_measures: Framework that github.com > skondo/evaluation_measures * 2009. Expected reciprocal rank for graded relevance. In Proceedings of the 18th ACM conference on Information and knowledge management (CIKM '09). Read more >		

arch ᆍ		
2 million results found	— Explanations	
	- Irrelevant	
	— Original paper	
	— Skipped	

Suppose we have signal values s_i

- 1. Map s_i to probability of finding answer R_i
- Use it to model termination rank (on which position the user will stop)

Probability of user terminating their session on rank k equals to

$$P(k) = R_k \prod_{i=1}^{k-1} (1 - R_i),$$

where R_i — probability of user to find answer on rank *i*. Use 1/s to have a metric with semantic "higher is better":

$$ERR^{4} = \sum_{k=1}^{n} \frac{1}{k} R_{k} \prod_{i=1}^{k-1} (1 - R_{i}).$$

4. Expected reciprocal rank for graded relevance https://dl.acm.org/doi/10.1145/1645953.1646033

Few months earlier, another cascade metric was proposed — $pFound^5$:

$$pFound = \sum_{i=1}^{n} pLook_i \cdot R_i,$$

where:

- 1. $pLook_i = pLook_{i-1} \cdot (1-R_{i-1}) \cdot (1-pBreak)$ probability that user will interact with object *i*:
 - ▶ User looked at object i-1
 - Did not found answer
 - Continued his search
- 2. *pBreak* probability of ending session

How to sample queries?

How to Sample Queries?

What queries to use in offline evaluation?

Most popular?

- ► Beak, simple queries
- Easy to process
- Affect lots of users

Unique queries?

- Tail, usually hard or ambiguous
- Huge amount (30%– 70% depending on service)

Something in the middle?

How to Sample Queries?

Simple idea: take a random sample

- 1. Flip a coin with a probability p on every object
- ► Heads use query
- ► Tails skip
- On average, $p \cdot N$ queries will be sampled

sampled

No guarantee that popular queries will be presented in sample

2. More sophisticated reservoir sampling⁶:

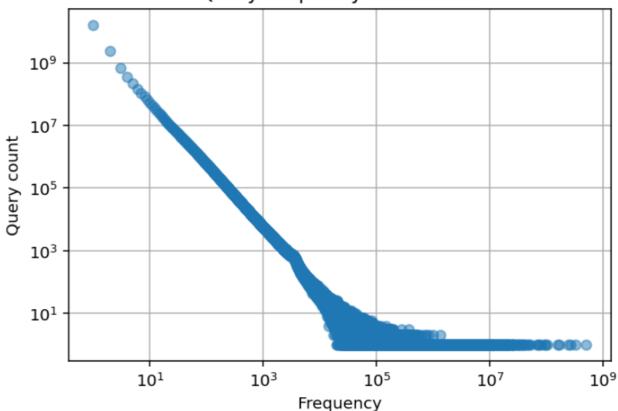
Every object is considered Exactly k objects will be

How to Sample Queries?

Stratified sampling:

- Each query q_i has frequency f_i
- Order queries by f_i and split them in k buckets Q_k s.t.

$$\begin{split} & \sum_{m \in Q_i} f_m \approx \sum_{k \in Q_j} f_k \ \forall i, j, \\ & \forall i < j \Rightarrow f_m < f_k \ \forall m \in Q_i, k \in Q_j. \end{split}$$



After that, sample the necessary amount from every bucket

Guarantees that queries of all frequencies will be presented in a sample

Query frequency distribution

Real life examples

Metric purpose

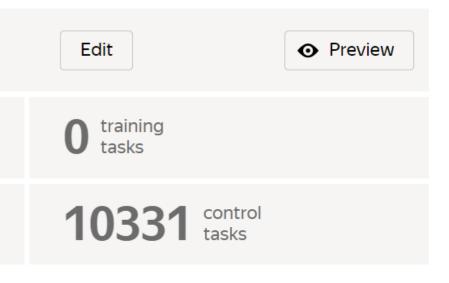
- Service quality monitoring (KPI metric) when you need to track what is going on with your service
- 2. Target for supervised learning for training machine learning algorithms
- 3. Acceptance metric final validation before release of new features

KPI

- 1. Motivate to increase quality
- 2. Respectively react to releases
- 3. Stable
- 4. Reliable
- 5. Regular measurements

Target for ML

- 1. Most informative
- 2. Huge volume
- 3. Suitable for trained models



Acceptance

- 1. Very fast
- 2. Before release
- 3. Offline A/B

SYSTEMS >	754432		769701 pers	= 7678	769706 pers	= 7678	769711 pers	= 7678	769717 pers	= 7678	769723 pers	= 7678	769320 pers	= 7678	769331 pers	= 7678
	VALUE	% DIFF	VALUE	% DIFF	VALUE	% DIFF	VALUE	% DIFF	VALUE	% DIFF	VALUE	% DIFF	VALUE	% DIFF	VALUE	% DIFF
	1.9491	+0.01%	1.96	+0.57%	1.9467	-0.12%	1.9546	+0.29%	1.9505	+0.08%	1.9639	+0.79%	1.9532	+0.22%	1.9558	+0.35%
	2.2808	+0.01%	2.2969	+0.72%	2.2787	-0.08%	2.2897	+0.40%	2.2838	+0.14%	2.3023	+0.97%	2.288	+0.33%	2.292	+0.50%
	0.8548	-0.01%	0.8535	-0.15%	0.855	+0.03%	0.854	-0.09%	0.8546	-0.02%	0.8531	-0.20%	0.8538	-0.12%	0.8534	-0.16%
	1.3051	+0.01%	1.3101	+0.39%	1.301	-0.31%	1.3066	+0.12%	1.3041	-0.07%	1.3128	+0.62%	1.3051	+0.01%	1.3075	+0.20%
	1.2655	+0.01%	1.2738	+0.67%	1.264	-0.11%	1.27	+0.37%	1.267	+0.13%	1.2766	+0.91%	1.2687	+0.26%	1.2709	+0.43%
	0.917	+0.01%	0.9263	+1.02%	0.9193	+0.26%	0.9234	+0.70%	0.9206	+0.40%	0.9284	+1.26%	0.9236	+0.73%	0.9244	+0.82%
	2.1825	+0.01%	2.2001	+0.82%	2.1834	+0.05%	2.1934	+0.51%	2.1876	+0.24%	2.205	+1.06%	2.1923	+0.46%	2.1953	+0.59%
	0.0983	+0.02%	0.0968	-1.48%	0.0953	-2.98%	0.0963	-2.00%	0.0961	-2.16%	0.0973	-0.98%	0.0957	-2.53%	0.0967	-1.54%
	1.8921	+0.01%	1.9065	+0.77%	1.8901	-0.10%	1.9009	+0.47%	1.8953	+0.17%	1.9112	+1.04%	1.8964	+0.24%	1.9001	+0.43%

What can go wrong?

What can go wrong

Clear instruction w/o conflicts

Example: "local language is more preferable than foreign language"

What went wrong: international porn sites were penalized \otimes

Result: service quality decreased

Moral: avoid ambiguity

What can go wrong

Design of pipeline

Example: tested random swap of images in pairwise comparisons

What went wrong: forgot to invert answers on swapped assignments

Result: white noise instead of useful signal

Moral: everything can break, use tests anywhere you can

Initially — in-house experts (assessors)

 Can perform sensitive tasks (signed NDA)

Pros

Easy to train/ control/interact Cons

Expensive

Hard to scale

What is crowdsource?

- 1. Lots of performers
- 2. Easy to scale
- 3. Easy to add and remove annotators

Need to control quality Open market, compete for performers

Goal:

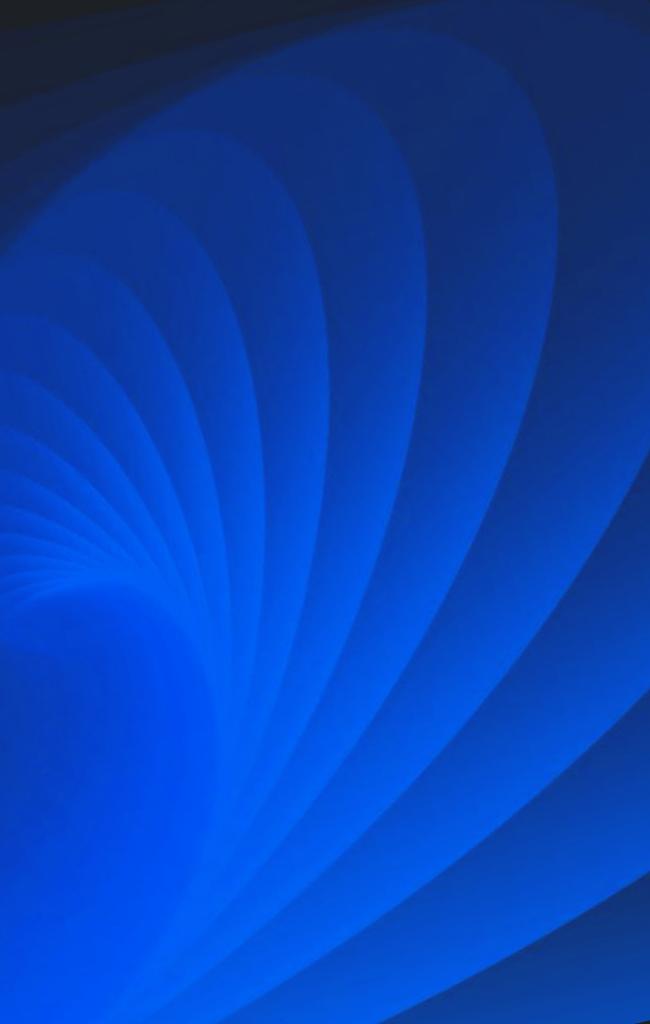
- 1. Replicate in-house processes on crowdsource
- 2. Scale
- 3. ...
- 4. PROFIT!

Is it possible?

Success story: we were able to replicate in-house pipeline using crowdsource

- 1. Same quality
- 2. Cheaper
- 3. More scalable, higher performance
- 4. Quality control via in-house pipeline
- 5. Relevance assessment in pairwise setting

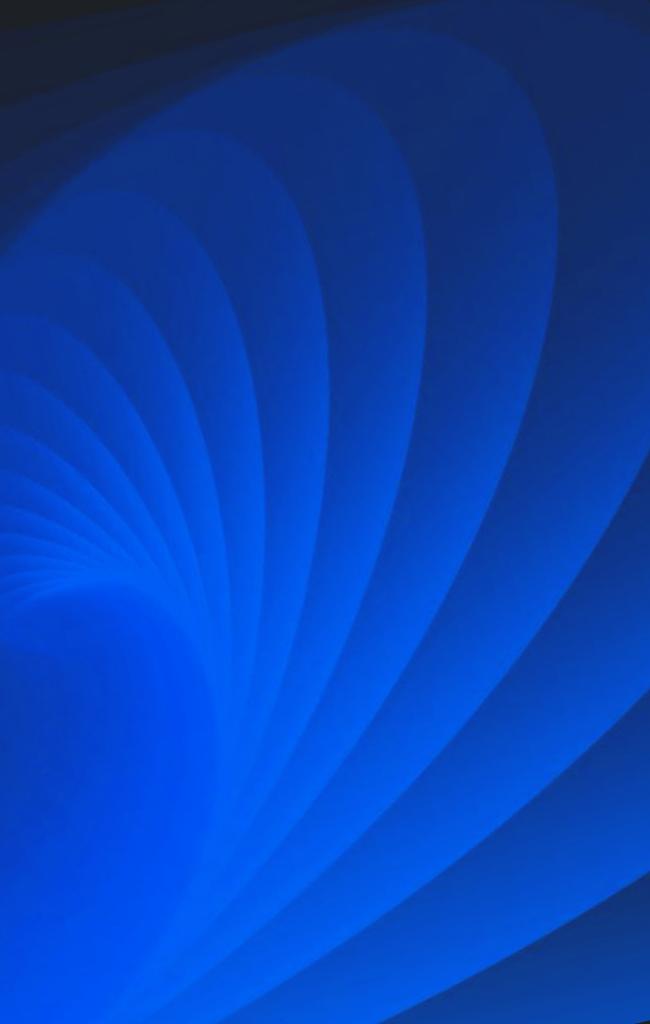
Datasets



Datasets

- 1. Text REtrieval Conference Data https://trec.nist.gov/data.html
- 2. Toloka Relevance 2 & Relevance 5 https://toloka.ai/datasets

Literature



Where to read more

- 1. A Short Survey on Online and Offline Methods for Search Quality Evaluation
- 2. Pairwise comparisons https://ieeexplore.ieee.org/abstract/document/6120246
- 3. Just sort it https://arxiv.org/abs/1502.05556
- 4. Cumulated gain-based evaluation of IR techniques https://doi.org/10.1145/582415.582418
- 5. ERR http://dx.doi.org/10.1145/1645953.1646033
- 6. pFound <u>http://romip.ru/romip2009/15_yandex.pdf</u> https://catboost.ai/docs/references/pfound.html
- 7. Reservoir sampling <u>http://www.cs.umd.edu/~samir/498/vitter.pdf</u>

Thanks!

Nikita Popov

Search department

rubik303@yandex-team.ru

@rubik303

Dashboard

Average overlap Average overlap Submitted responses G440530 udget Spending (excluding markup) Average task price. Today Yesterday Week Month All time 12/28/2019 - 4/13/2021 Group by: Day	
Average overlap Submitted responses 6440530	
Task completion time Budget Spending (excluding markup) Assignments	
Budget Assignments Spending (excluding markup) Average task price Today Yesterday Week Month All time 12/28/2019 - 4/13/2021 Group by: Day	
Spending (excluding markup) Assignments Average task price Today Yesterday Week Month All time 12/28/2019 - 4/13/2021 Group by: Day	
markup) Average task price Today Yesterday Week Month All time 12/28/2019 - 4/13/2021 Group by: Day ~	
Average task price Today Yesterday Week Month All time 12/28/2019 - 4/13/2021 Group by: Day ~	
Quality on control tasks	UTC+0
and training tasks 300k	
Blocked by rules	
Banned users	
erformers 200k	
Users completing tasks in project	
Restances []]]	
3.1.3.5.12.5.12.5.2.8.5.2.8.5.2.8.5.2.8.5.2.6.5.8.5.2.5.5.6.2.6.2.5.6.2.5.6.2.5.5.2.5.2.5	
	Plants.

https://toloka.yandex.com/reques ter/project/<project_id>/statistics