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Reminder: we implemented this pipeline

Task for
performers

Project #1

PN

a set of photos

Does a photo

Project #2

contain
a specific item?

If yes

N

Find a similar
item in the
online store

AL

photos
with items

Project #3

|s the found item
(project 2)
similar to the initial one?
(post-verification)

Project #4

photos
with incorrect
similar items

l

Reject the result
In Project #2
Do not pay for it

photos
with correct
similar items

|

Accept the result
in Project #2
Pay for it

Which of the
found items
IS more similar
to the initial
one?

/A
T ANA

photos with best
substitute




Project #1: Filter out photos
without objects

Task

» Does a photo contain an item
of desired type?

Are there shoes in the picture?

Yes No Picture not found

Our results

» Amount: 30 photos

» Overlap: 3

» Time: 5 min

» Cost: $0.09 + Toloka fee




Project #2: Searching for similar items on

| ||

|

'.
N
4

the online store

Task

» Find a similar item on the
Internet

Our results

» Amount: 25 photos

» Overlap: 3

» Time: 25 min

» Cost: $1.74 + Toloka fee

Find the same shoes on ASOS

ASOS

Shoes must be the same color and the
same style.

Paste the link here

Upload the image here. The image should
show the shoes you found.



Project #3: Accept correctness
of items found

Task y

» |s the found item (project 2)
similar to the initial one?

Our results

» Amount: 75 photos

Check that the uploaded image
matches the product in the store.,

» Overlap: 3

» Time: 3 min
» Cost: $0.20 + Toloka fee

Are these shoes similar to each
athar?

Shoes must be the same color and
the same styla.




Project #4. Decide which substitute
works best

Task

» \Which of the items Is similar to
the Initial one?

Our results

» Amount: 62 photos

» Overlap: 3

» Time: 10 min

» Cost: $0.10 + Toloka fee




Statistics over the whole pipeline

» 30 photos processed to find the substitute
items and evaluate their similarity

» Within 45 min on real performers

» Total cost: $2.15 + Toloka fee



Afterparty: upgrade your pipeline

To obtain more comprehensive data
» Use more item types at the same time

To reduce costs
» Use incremental relabeling aka Dynamic overlap

To improve quality

» Use dynamic pricing

» Add more Golden Sets and hints

» EXxperiment with aggregation methods
» Add training for performers




API| of Toloka

Allows you to automate all steps
of our pipeline

» Discover at:
https://yandex.com/dev/toloka/

10


https://yandex.com/dev/toloka/

Crowdsource all types of data

Search Relevance Moderation

Generation of content

Computer vision
Speech Technologies
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