Part VI

Theory on Aggregation

Valentina Fedorova, Research analyst

Toloka

Tutorial schedule

Part II: 25 min **Lunch break: Coffee break:** Introduction: Brainstorming 90 min **20** min 30 min pipeline Part III: 10 min Part V: 35 min Part VII: 60 min Part I: 40 min Set & Run Projects Introduction to Interface & Quality Main Components cont. **Crowd Platform** control Part VI: 25 min Part VIII: 20 min Part IV: 85 min Coffee break: Incremental Theory on Set & Run Projects 30 min relabeling and pricing Aggregation Part IX: 10 min Results & Conclusions

Labeling data with crowdsourcing

- ► How to choose a reliable label?
- How many workers per object?
- ► How much to pay to workers?
- **...**

Evaluation of labeling approaches

- ► Labels with a maximal level of accuracy for a given budget or
- ► Labels of a chosen accuracy level for a minimal budget

Key components of labeling with crowds

Aggregation

Labeling data with crowds

Classify images

Upload multiple copies of each object to label

Workers assign noisy labels to objects

Aggregate multiple labels for each object into a more reliable one

Process results

Multiclass labels

Project 1: Filter images

Are there shoes in the picture?

Yes

No

Notation

- ► Categories k∈{1,...,K}. E.g.:
- ▶ Objects j∈{1,...,J}. E.g.:

- ► Workers: w∈{1,...,W}. E.g.:
 - W_j⊆{1,...,W} workers labeled object j

The simplest aggregation: Majority Vote (MV)

- ► The problem of aggregation:
 - Observe noisy labels

$$y = \{y_j^w | j = 1, ..., J \text{ and } w = 1, ..., W\}$$

- Recover true labels $z = \{z_j | j = 1, ..., J\}$
- A straightforward solution:

$$\hat{\mathbf{z}}_{j}^{MV} = \arg\max_{\mathbf{v}=1,\dots,K} \sum_{\mathbf{w}\in\mathbf{W}_{j}} \delta(\mathbf{y} = \mathbf{y}_{j}^{\mathbf{w}}), \text{ where } \delta(\mathbf{A}) = 1 \text{ if A is true and 0 otherwise}$$

Performance of MV vs other methods

Properties of MV

All workers are treated similarly

All objects are treated similarly

Advanced aggregation: workers and objects

Parameterize expertise of workers by e^{w}

Parameterize difficulty of objects by d_i

Advanced aggregation: latent label models

Latent label models: noisy label model

A noisy label model $M_j^w = M(e^w, d_j)$ is a matrix of size $K \times K$ with elements

$$M_j^w[c,k] = Pr(Y_j^w = k | Z_j = c)$$

Latent label models: generative process

Noisy labels generation:

- ightharpoonup Sample z_i from a distribution $P_Z(p)$
- ► Sample y_j^w from a distribution $P_Y(M_i^w[z_j,\cdot])$

In multiclassification, a standard choice for $P_Z(\cdot)$ and $P_Y(\cdot)$ is a Multinomial distribution $Mult(\cdot)$

Latent label models: parameters optimization

- ightharpoonup Assumption: y_j^W is cond. independent of everything else given z_j , d_j , e^W
- ► The likelihood of y and z under the latent label model:

► Estimate parameters and true labels by maximizing L(...)

Latent label models: EM algorithm

Maximization of the expectation of log-likelihood (LL)*

$$\mathbb{E}_{\mathbf{z}}\log \Pr(\mathbf{y}, \mathbf{z}) = \sum_{\mathbf{j} \in \mathbf{J}} \sum_{\mathbf{z}_{\mathbf{j}} \in \{1, \dots, K\}} \Pr(\mathbf{z}_{\mathbf{j}} | \mathbf{p}) \log \prod_{\mathbf{w} \in \mathbf{W}_{\mathbf{j}}} \Pr(\mathbf{z}_{\mathbf{j}} | \mathbf{p}) \Pr(\mathbf{y}_{\mathbf{j}}^{\mathbf{w}} | \mathbf{z}_{\mathbf{j}}, \mathbf{d}_{\mathbf{j}}, \mathbf{e}^{\mathbf{w}})$$

► E-step: Use Bayes' theorem for posterior distribution of \hat{z} given p, d, e:

$$\hat{z}_j[c] = \Pr(Z_j = c|y, p, \mathbf{d}, \mathbf{e}) \propto \Pr(Z_j = c|p) \prod_{w \in W_i} \Pr(y_j^w|Z_j = c, \mathbf{d}_j, \mathbf{e}^w)$$

▶ **M-step:** Maximize the expectation of LL with respect to the posterior distribution of \hat{z} :

$$(p, \mathbf{d}, \mathbf{e}) = \operatorname{argmax} \mathbb{E}_{\hat{z}} \log \Pr(\mathbf{z}_{j}|p) \prod_{\mathbf{w} \in \mathbf{W}_{i}} \Pr(\mathbf{y}_{j}^{\mathbf{w}}|\mathbf{z}_{j}, \mathbf{d}_{j}, \mathbf{e}^{\mathbf{w}})$$

- Analytical solutions
- Gradient descent

* it is a lower bound on LL of y and z

Latent label model (LLM): special cases

- ▶ Dawid and Skene model (DS):
 - Categories are different
 - Objects are similar
 - Workers are different
- ► Generative model of labels, abilities, and difficulties (GLAD):
 - Categories are similar
 - Objects are different
 - Workers are different
- Minimax conditional entropy model (MMCE):
 - Categories are different
 - Objects are different
 - Workers are different

Dawid and Skene model (DS)

LLM with parameters:

- ► p vector of length K: p[i] = Pr(Z = c)
- e^w matrix of size $K \times K$: $e^w[c, k] = Pr(Y^w = k | Z = c)$

DS: parameters optimization

► E-step:

$$\widehat{z_j}[c] = \frac{p[c] \prod_{w \in W_j} e^w[c, y_j^w]}{\sum_k p[k] \prod_{w \in W_j} e^w[k, y_j^w]}, \qquad c = 1, ..., K$$

► M-step: Analytical solution

$$\mathbf{e^{w}}[c,k] = \frac{\sum_{j \in J} \widehat{z_{j}}[c]\delta(y_{j}^{w} = k)}{\sum_{q=1}^{K} \sum_{j \in J} \widehat{z_{j}}[c]\delta(y_{j}^{w} = q)}, \quad k, c = 1, ..., K$$

$$p[c] = \frac{\sum_{j \in J} \widehat{z_j}[c]}{J}, \qquad c = 1, ..., K$$

Generative model of Labels, Abilities, and Difficulties (GLAD)

LLM with parameters:

- ▶ Scalar $d_i \in (0, \infty)$
- ▶ Scalar $e^{W} \in (-\infty, \infty)$
- ► Model:

$$Pr(Y_j^W = k | Z_j = c) = \begin{cases} a(w,j), & c = k \\ \frac{1 - a(w,j)}{K - 1}, c \neq k \end{cases}$$

where
$$a(w,j) = \frac{1}{1 + \exp(-e^{w}d_{j})}$$

GLAD: parameters optimization

► Let $a(w,j) = \frac{1}{1 + \exp(-e^w d_j)}$ and $P(z_j)$ be a predefined prior (e.g., $P(z_j) = \frac{1}{K}$)

► E-step:

$$\widehat{z_j}\left[c\right] \propto P\left(Z_j = c\right) \prod_{w \in W_j} a(w, j)^{\delta\left(y_j^W = c\right)} \left(\frac{1 - a(w, j)}{K - 1}\right)^{\delta\left(y_j^W \neq c\right)}, \ c = 1, \dots, K$$

▶ M-step: estimate (d, e) for given \hat{z} using gradient descent

$$(d^{t}, e^{t}) = \operatorname{argmax} \sum_{j \in J} \left[\mathbb{E}_{\widehat{z}_{j}} \log P(z_{j}) + \sum_{w \in W_{j}} \mathbb{E}_{\widehat{z}_{j}} \log Pr(y_{j}^{w}|z_{j}) \right]$$

MiniMax Conditional Entropy model (MMCE)

► Find parameters that minimize the maximum conditional entropy of observed labels:

$$\begin{aligned} \text{min}_{Q} \text{max}_{P} - \sum_{\substack{j \in J \\ c \in \{1, \dots, K\}}} Q \big(Z_{j} = c \big) \sum_{\substack{w \in W \\ k \in \{1, \dots, K\}}} P \big(Y_{j}^{\text{w}} = k | Z_{j} = c \big) \text{log } P \big(Y_{j}^{\text{w}} = k | Z_{j} = c \big) \end{aligned}$$

- ► LLM with parameters:
 - d_i matrix of size K × K
 - e^w matrix of size K × K
 - Noisy label model:

$$Pr(Y_j^W = k|Z_j = c) = exp(d_j[c, k] + e^W[c, k])$$

Summary of aggregation methods

	MV	DS	GLAD	MMCE
Categories (K)				
Objects (J)				
Workers (W)	\mathcal{N}^{1} \mathcal{N}^{1}	\mathcal{N}^{1} \mathcal{N}^{2} \mathcal{N}^{3}	\mathcal{N}^{1} \mathcal{N}^{2} \mathcal{N}^{3}	\mathcal{N}^{1} \mathcal{N}^{2} \mathcal{N}^{3}
Number of parameters	0	$WK^2 + K$	W + J	$(W + J)K^2$

Pairwise comparisons

Project 4: Compare items

Which shoes look more similar to the one in the picture?

Right

Notation

- ► Answers: Left or Right
- ► Items $d_i \in \{1, ..., N\}$ E.g.:

► Tasks:

Choose a better item: Left Right

Formalization

Ranking from pairwise comparisons:

► Given pairwise comparisons for items in *D*:

$$P = \{(w_k, d_i, d_j): i \succ_k j\}$$

▶ Obtain **a ranking** π over items $D \rightarrow \{1, ..., N\}$ based on answers in P

Difference from multiclassification

► The latent label assumption is not satisfied when comparing complex items

Different tasks may contain common items

Bradley and Terry model (BT)

Assume that each item $d_i \in D$ has a latent "quality" score $s_i \in \mathbb{R}$

▶ The probability that $d_i \in D$ will be preferred in a comparison over $d_j \in D$

$$\Pr(i > j) = f(s_i - s_j)$$
, where $f(x) = \frac{1}{1 + e^{-x}}$.

The model assumes that all workers are equally good and truthful

NoisyBT model: parameterization of workers

$$w_k$$
 "reliability" γ_k and "bias" q_k

► The probability that w reads task is

$$\Pr(w_k \text{ reads a task}) = f(y_k) \leftarrow \text{Logistic function}$$

▶ If w_k reads a task, she answers according to scores:

$$(f(s_i - s_j), f(s_j - s_i))$$

Probability to choose Left if compares items

▶ If w_k does not read a task, she answers according to her bias

$$f(q_k), f(-q_k)$$

Probability to choose Left if answers randomly

NoisyBT: likelihood of workers' answers

The likelihood of $i >_k j$ is

 $\mathbb{I}(d_i \text{ was left}) = 1$

$$\Pr(i \succ_k j) = \underbrace{f(\gamma_k)f(s_i - s_j)} + \underbrace{(1 - f(\gamma_k))f((-1)^{(1 - \mathbb{I}(d_i \text{ was left}))}q_k)}_{\text{Random answer}},$$

where $\mathbb{I}(d_i \text{ was left})$ is the indicator for the order of d_i and d_j

 $\mathbb{I}(d_i \text{ was left}) = 0$

NoisyBT: parameters optimization

Likelihood of observed comparisons:

$$T(s, q, \gamma) = \sum_{(w_k, d_i, d_j) \in P} \log \Pr(i \succ_k j) =$$

$$\sum_{(w_k,d_i,d_j)\in P} \log[f(\gamma_k)f(s_i-s_j) + (1-f(\gamma_k))f((-1)^{(1-\mathbb{I}(d_i \text{ was left}))}q_k)]$$

 \triangleright $\{s_i\}_{i=1,...,N}$ and $\{\gamma_k, q_k\}_{k=1,...,W}$ are inferred by maximizing the log-likelihood:

$$T(s,q,\gamma) \to \max_{\{s_i,\gamma_k,q_k\}}$$

▶ To obtain a ranking π over items, sort items according to their scores

Summary about pairwise comparisons

Latent scores models for ranking from pairwise comparisons:

► To reduce bias from unreliable answers parameterize workers

$$w_k$$
 "reliability" γ_k and "bias" q_k