**Toloka

Improving Recommender Systems with Human-in-the-Loop

Dmitry Ustalov, Natalia Fedorova, Nikita Pavlichenko, Maxim Kunakov, Fedor Zhdanov

Part V From Human Labels to Ground Truth

Fedor Zhdanov, Head of Machine Learning

Tutorial Schedule

Part I Intro: 10 min
Introduction

Part III: 20 min
Human-in-the-Loop Essentials

Part III: 20 min Human-in-the-Loop Essentials Part IV: 50 min Hands-On Practice Session **Coffee Break:** 10 min

Part V: 30 min
From Human Labels to
Ground Truth

Part VI: 10 min
Conclusion

Answer Aggregation

Difference from Multiclassification

► The latent label assumption is not satisfied when comparing complex items

Different tasks may contain common items

Formalization

- ► Answers: Left or Right
- ▶ Items $d_j \in \{1, ..., N\}$
- \blacktriangleright Given pairwise comparisons for items in D:

$$P = \{(w_k, d_i, d_j): i \succ_k j\}$$

▶ Obtain a ranking π over items $D \rightarrow \{1, ..., N\}$ based on answers in P

Bradley and Terry Model (BT)

▶ Assume that each item $d_i \in D$ has a latent "quality" score $s_i \in \mathbb{R}$

▶ The probability that $d_i \in D$ will be preferred in a comparison over $d_j \in D$

$$\Pr(i > j) = f(s_i - s_j),$$

where $f(x) = \frac{1}{1 + e^{-x}}$.

The model assumes that all performers are equally good and truthful!

NoisyBT

$$w_k$$
 "reliability" γ_k and "bias" q_k

The likelihood of $i >_k j$ is

$$\Pr(i \succ_k j) = f(\gamma_k) f(s_i - s_j) + (1 - f(\gamma_k)) f((-1)^{(1 - \mathbb{I}(d_i \text{ was left}))} q_k),$$
Truthful answer

Random answer

where $\mathbb{I}(d_i \text{ was left})$ is the indicator for the order of d_i and d_i

NoisyBT: Example

Performer	Task	Left	Right
w ₁	t ₁	а	b
w ₁	t_2	b	С
W ₁	t_3	С	а
w ₂	t ₁	а	b
W ₂	t_2	b	С
W ₂	t_3	С	а

Item	Score
а	1.000
b	0.547
С	0.000

Performer	Bias	Skill
W ₁	0.633	0.656
W_2	1.000	0.000

The model can be estimated using gradient descent.

Crowd-Kit

- Crowd-Kit is a general-purpose Python library for answer aggregation in crowdsourcing
- ► Algorithms: Majority Vote, Dawid-Skene, Bradley-Terry, NoisyBT, RASA, HRRASA, etc.
- PyPI: https://pypi.org/projects/crowd-kit/

NoisyBT with Crowd-Kit: Input

```
import pandas as pd # pip install pandas
from crowdkit.aggregation import NoisyBradleyTerry # pip install -U crowd-kit
# In this example we will use the annotation results in the Toloka TSV format,
# but Crowd-Kit is platform-agnostic and it can handle any other format
df = pd.read csv('annotation.tsv', sep='\t', dtype=str)
# Filter golden tasks and comparisons where both items were irrelevant
df = df[df['GOLDEN:result'.isna()]]
df = df[df['OUTPUT:result' != '404']]
```

NoisyBT with Crowd-Kit: Processing

```
df['OUTPUT:result'] = df.apply(
   lambda row: row['INPUT:recommendation a'] if row['OUTPUT:result'] = 'recommendation a' else
row['INPUT:recommendation b'], axis=1)
# We need the output column values to be the IDs of items that won a comparison
df = df.rename(columns={'INPUT:recommendation a': 'left', 'INPUT:recommendation a': 'right',
'OUTPUT:result': 'label', 'ASSIGNMENT:worker id': 'worker'})
# We need left, right, label, and worker columns to run aggregations from Crowd-Kit
```

NoisyBT with Crowd-Kit: Aggregation

Join our Slack: recsys_2022

Fedor Zhdanov

Head of Machine Learning at Toloka

fedorzh@toloka.ai

https://toloka.ai/events/recsys-2022/

https://bit.ly/3eYIX2P