

Improving **Recommender Systems** with Human-in-the-Loop

Dmitry Ustalov, Natalia Fedorova, Nikita Pavlichenko, Maxim Kunakov, Fedor Zhdanov

RecSys 2022 Tutorial

Part II Ranking and Its Quality

Dr. Dmitry Ustalov, Head of Research

Tutorial Schedule

Part I Intro: 10 min Introduction

Part II: 20 min Ranking and Quality Metrics Part III: 20 min Human-in-the-Loop Essentials

Part IV: 50 min Hands-On Practice Session

> Coffee Break : 10 min

Part V: 30 min From Human Labels to Ground Truth

Part VI: 10 min Conclusion

Online and Offline Metrics

How labeled data is used

- 1. Calculating offline metrics to evaluate how a model is performing
- 2. Training ML models and choosing the best model version

Offline metrics measured with data labeling

Pros

- Clear signal
- Measures designated product characteristics
- Fast results

Cons

- Not actual users (not always a representative sample)
- Can't measure business metrics

Online metrics measured with A/B tests

Pros

- ŧ
- Results from real users
- Measures business metrics (clicks, dwell time, leakage)

Cons

- Implicit signal
- Delayed response
- Slow results (long experiments)
- Clickbait
 - Fraud

Signals

What We Need to Do

- 1. Evaluate every response object r with some quality measure s (create a signal)
- 2. Aggregate s to overall measure of quality (create a metric)

Search engine

- ► Text search
- Image search
- Ecommerce goods search

Recommendations

- Music feed
- Content feed
- Social media feed

Content Moderation

- Service quality assurance
- Social media business account behavior

Signals

In order to calculate metric, we need to estimate response objects.

It can be done through multiple approaches

- Pointwise
- Listwise
- Pairwise

Signals are usually obtained through experts or crowdsource platforms, less commonly — from precomputed data.

Ranking and Recommender Evaluation

•• 🗈 < >

D

Music System |

https://www.amazon.com > Music-Systems > Music+...

Bluetooth Stereo System for Home with CD Player, Wireless Streaming, MP3, USB, Audio in, FM Radio, 15W, Micro Music Sound...

https://www.amazon.in > Home-Theater-Music-System ...

1-16 of over 5,000 results for "Home Theater Music System". RESULTS · 4.1 Channel Multimedia Speaker System with Bluetooth (Black)...

https://re-store.ru > catalog...

Home theatre systems come in several forms. Most music systems come with a subwoofer and a plethora of speakers...

C

Pointwise

Given a query q and a single response r_i , we can judge how well does this object match to a user query

Pointwise

Examples

Binary relevance

Multiple grade relevance

- Relevant
- ► Semi-relevant
- ► Non-relevant
- ► Etc.

Match score from 0 to 100%

Listwise

Order all objects at once and use ranks as signal Useful in training ML algorithms

Pairwise

Pointwise is of low resolution, listwise is inconsistent Pairwise comparisons tackle both of this problems, they are a perfect example of task decomposition.

Which one?

- 1. In the beginning, use pointwise as baseline
- 2. When you have a working service, use pairwise (for incremental improvements)

We will focus on pairwise evaluation in our practice.

Metrics

Ranking metrics

- 1. Mean Average Precision (mAP) measures trade-off between precision and recall going down through service response
- 2. Normalized Discounted Cumulative Gain (nDCG) measures quality of objects with discount factor
- 3. Expected Reciprocal Rank (ERR) is a cascade model of user interaction with service response

Let us recall some definitions from binary classifier ($s_i \in \{0, 1\}$):

Precision =
$$\frac{TP}{TP + FP}$$

Recall = $\frac{TP}{TP + FN}$

Actual Class

Precision@k and Recall@k: precision and recall over top-k elements

How precision and recall changes going down the list?

- 1. Recall increases (non-decreasing function)
- 2. Precision can be arbitrary

Area under precision-recall curve is:

- Maximum for perfect order (positive objects on top, negative on bottom)
- 2. Minimum for the worst order

We can define precision as function of recall p(r)

19

We can define Average Precision as the following:

$$AP = \int_0^1 p(r) dr.$$

r is recall p(r) is precision

AP is the area under precision-recall curve (precision-recall AUC)

20

In a simple discrete case, previous equation can be transformed into:

$$AP = \sum_{i=1}^{n} Precision@i \cdot \Delta Reco$$

where $\Delta Recall@i=Recall@i-Recall@(i-1)$

all@i,

Since $\Delta Recall@i$ is positive iff included object is true positive, we can simplify AP to

$$AP = \frac{1}{n} \sum_{i=1}^{n} Precision@i[s_i = 1].$$

Mean average precision is defined as mean AP over set of queries:

$$mAP = \frac{1}{Q} \sum_{q} AP(q).$$

- Good ranking puts the best objects on top
- Idea: sum signal values of ordered response with some discounter
- The lower the object, the lower its impact on metric is

We can define discounted cumulative gain (DCG³) as following:

$$DCG@k = \sum_{i=1}^{k} \frac{S_i}{d(i)},$$

where d(i) is a discounting factor

3. Cumulated gain-based evaluation of IR techniques https://doi.org/10.1145/582415.582418

Example of discounters:

Linear: *i*

Logarithmic: $\log_2(i+1)$

Exponential: 2^{*i*}

Raw DCG cannot be compared between queries, normalization is required

To align values of DCG we can normalized it by ideal DCG:

$$IDCG@k = \sum_{i=1}^{k} \frac{S(i)}{d(i)},$$

where $s_{(i)}$ is i-th object with largest signal available

Thus, nDCG is defined as following:

$nDCG@k = \frac{DCG@k}{IDCG@k}$

Now values are between 0 and 1 and thus cross-query comparable

Expected Reciprocal Rank (ERR)

Web Images Video Maps

■ Expected reciprocal rank / Хабр habr.com > ru/company/econtenta/blog/303458/ ▼		
 Expected Reciprocal Rank lingpipe-blog.com >zhangexpected-reciprocal-rank • 2009. Expected reciprocal rank for graded relevance Expected reciprocal rank is based on the cascade model of search (there are citations in the paper). Read more > Mean reciprocal rank - Wikipedia en.wikipedia.org > Mean reciprocal rank • The mean reciprocal rank is a statistic measure for evaluating any process that produces a list of possible responses to a sample of queries, ordered by probability of correctness. The reciprocal rank of a query response is the multiplicative inverse of the Read more > 	E	
	Ir	
(PDF) Expected reciprocal rank for graded relevance researchgate.net >Expected_reciprocal_rank_for	C p	
 Expected reciprocal rank for graded relevance Proceedings dl.acm.org > doi/10.1145/1645953.1646033 Home Conferences CIKM Proceedings CIKM '09 Expected reciprocal rank for graded relevance Rank-biased precision for measurement of retrieval effectiveness. ACM Trans. Inf. Read more >]	
Expected Reciprocal Rank for Graded Relevance - PDF docplayer.net > 20782422-Expected-reciprocal-rank •	S	
The Expected Reciprocal Rank is a cascade based metric with $\phi(r) = /r$. It may not seem straightforward to compute ERR from the previous definition because there is an expectation . However it can easily be computed as follows: ERR := r= P Read more >		
The Expected Reciprocal Rank is a cascade based metric with		

million results found

olanations

levant

ginal)er

pped

Expected Reciprocal Rank (ERR)

Suppose we have signal values s_i

- Map s_i to probability of finding answer R_i 1.
- 2. Use it to model termination rank (on which position the user will stop)

Expected Reciprocal Rank (ERR)

Probability of user terminating their session on rank k equals to

$$P(k) = R_k \prod_{i=1}^{k-1} (1 - R_i),$$

where R_i — probability of user to find answer on rank *i*. Use 1/s to have a metric with semantic "higher is better":

$$ERR^{4} = \sum_{k=1}^{n} \frac{1}{k} R_{k} \prod_{i=1}^{k-1} (1 - R_{i}).$$

4. Expected reciprocal rank for graded relevance https://dl.acm.org/doi/10.1145/1645953.1646033

30

Most popular?

- Beak, simple queries
- Easy to process
- Affect lots of users

2

- Tail, usually hard or ambiguous
- Huge amount (30%–70% depending on the service)

Something in the middle?

Simple idea: take a random sample

- 1. Flip a coin with a probability 2. p on every object
- Heads: use the query
- Tails: skip
- On average, $p \cdot N$ queries will be sampled

- - sampled

No guarantee that popular queries will be presented in sample!

More sophisticated reservoir sampling⁶:

Every object is considered Exactly *k* objects will be

Stratified sampling:

- Each query q_i has frequency f_i
- Order queries by f_i and split them in k buckets Q_k s.t.

$$\begin{split} & \sum_{m \in Q_i} f_m \approx \sum_{k \in Q_j} f_k \ \forall i, j, \\ & \forall i < j \Rightarrow f_m < f_k \ \forall m \in Q_i, k \in Q_j. \end{split}$$

After that, sample the necessary amount from every bucket

Guarantees that queries of all frequencies will be presented in a sample

Query frequency distribution

How to Sample Pairs?

How to Sample Pairs?

What is the right number of pairs for evaluation?

Lower bound

 Traditional sorting algorithms like MergeSort run n log n comparisons

Upper bound

The number of all possible pairs is bound by n²

Reasonable bound

- Select kn log n pairs (sort objects multiple times)
- k is a hyper-

What to Compare?

n log n is enough when compares are transitive: >

$$i > j, j > k \Rightarrow i > k$$

- Human judgements do not always provide transitivity >
- But we can rely on Bradley-Terry's *linear order* >

$$\frac{P(i > k)}{P(i < k)} = \frac{P(i > j)P(j > k)}{P(i < j)P(j < k)}$$

Using latent scores s_i, s_j, s_k from Bradley-Terry model, we have $s_i - s_k = s_i - s_j + s_j - s_k$

Applications and Problems

Metric purpose

- 1. Service quality monitoring (KPI metric): when you need to track what is going on with your service
- 2. Target for supervised learning: for training machine learning algorithms
- 3. Acceptance metric: final validation before the release of new features

What can go wrong

Nothing is perfectly reliable!

Basic checks: input and output, presence of judgements, service availability

Advanced checks: A/A testing, comparison with previously known verdicts, re-evaluations, DSAT

Initially: in-house experts (assessors)

Pros

- Trusted
- Can perform sensitive tasks (signed NDA)
- Easy to train/ control/interact

Cons

- Expensive
- ► Hard to scale

What is crowdsource?

- Lots of annotators
- Easy to scale
- Easy to add and remove annotators

Cons:

- Need to control quality
- Open market, compete for annotators

It is possible to replicate in-house annotation processes with crowdsourcing!

- Same quality 1.
- 2. Cheaper
- More scalable, higher performance 3.
- Quality control via in-house pipeline 4.
- Relevance assessment in pairwise setting 5.

References

Where to read more

- 1. A Short Survey on Online and Offline Methods for Search Quality Evaluation
- 2. Pairwise comparisons: https://ieeexplore.ieee.org/abstract/document/6120246
- 3. Just sort it: <u>https://arxiv.org/abs/1502.05556</u>
- Cumulated gain-based evaluation of IR techniques: 4. https://doi.org/10.1145/582415.582418
- 5. ERR: <u>https://doi.org/10.1145/1645953.1646033</u>
- 6. Reservoir sampling: <u>http://www.cs.umd.edu/~samir/498/vitter.pdf</u>
- 7. RankEval: <u>https://github.com/hpclab/rankeval</u>

Datasets

- 1. Text REtrieval Conference Data <u>https://trec.nist.gov/data.html</u>
- 2. Toloka Relevance 2 & Relevance 5 https://toloka.ai/datasets

Join our Slack: recsys 2022

Dr. Dmitry Ustalov

Head of Research

dustalov@toloka.ai

https://toloka.ai/events/recsys-2022/

https://bit.ly/3eYIX2P