

Improving **Recommender Systems** with Human-in-the-Loop

Dmitry Ustalov, Natalia Fedorova, Nikita Pavlichenko, Maxim Kunakov, Fedor Zhdanov

RecSys 2022 Tutorial

Part I Introduction

Fedor Zhdanov, Head of Machine Learning at Toloka

Recommender Systems

- Recommender systems employ Machine Learning to produce recommendations
- Even state-of-the-art recommender models do not correlate with actual human preferences
- In this tutorial, we show how to gather real human judgments on recommendations using crowdsourcing
- But the methodology can be used beyond crowdsourcing

Ranking and Recommender Evaluation

•• 🗈 < >

D

Music System |

https://www.amazon.com > Music-Systems > Music+...

Bluetooth Stereo System for Home with CD Player, Wireless Streaming, MP3, USB, Audio in, FM Radio, 15W, Micro Music Sound...

https://www.amazon.in > Home-Theater-Music-System ...

1-16 of over 5,000 results for "Home Theater Music System". RESULTS · 4.1 Channel Multimedia Speaker System with Bluetooth (Black)...

https://re-store.ru > catalog...

Home theatre systems come in several forms. Most music systems come with a subwoofer and a plethora of speakers...

Ċ

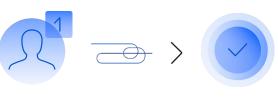
⊕ ¹ +

Crowdsourcing

Crowdsourcing as engineer-oriented approach

In-house "expert": managing people

Direct managing in-house crowd



- Easy to setup
- ► Unmeasurable

Expensive

► Measurable

► Scalable

- Impossible to scale

BPO / vendor

Access to crowd via third-party BPO who manage them

, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Quick access to crowd	Unmeasur
		Expensive	Hard to sc

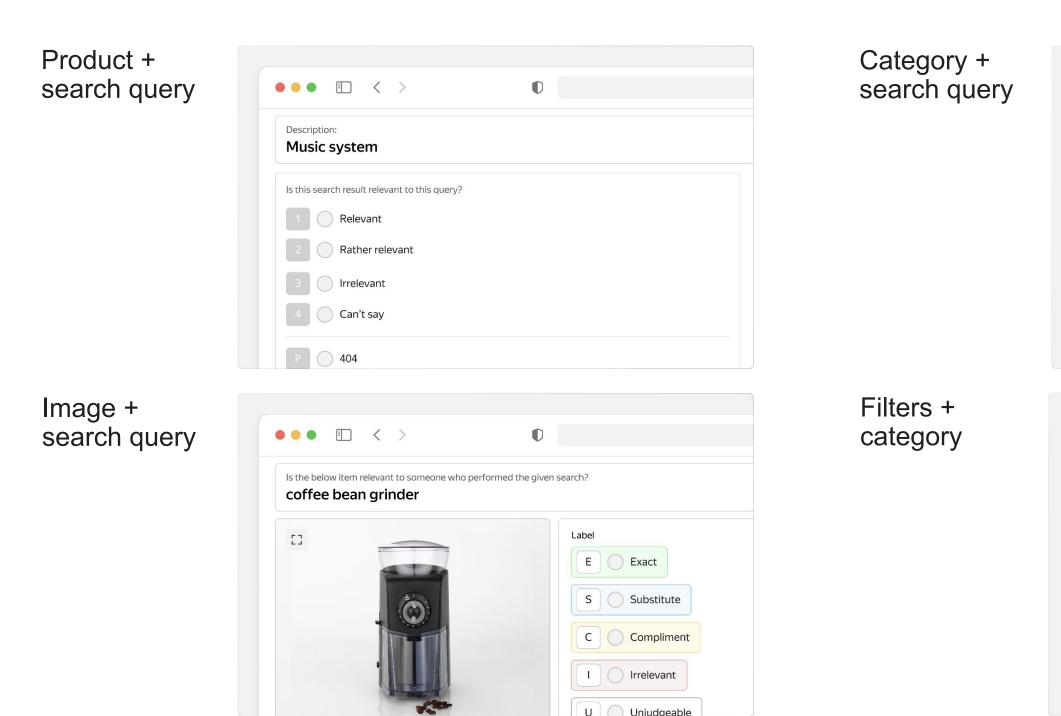
Crowdsourcing

Technologically managing crowd as yet another computing power

- Manageable
- tech

urable cale Requires advanced

Crowdsourcing examples: use cases to improve search relevance

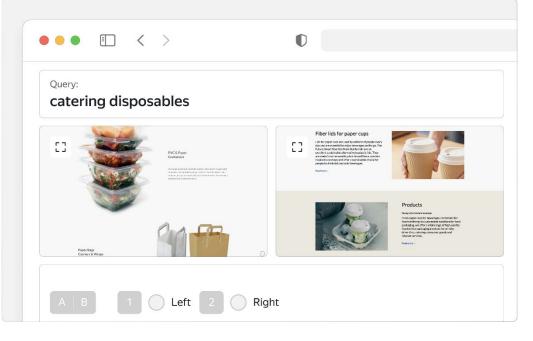


••• • <	>	0	
Classify how relevant the ca	tegory is to the searc	h query	
_{Query} Kitchen table			
Category Dining room fur	niture		
1 Excellent	3 Fair	5 Adult	7 Unreadable text
2 Good	4 Bad	6 Junk	

Classify filter relevance to the product category
Filter high heel
Category Women's shoes
S Google first text D Google second text
1 Excellent 3 Fair
2 Good 4 Bad

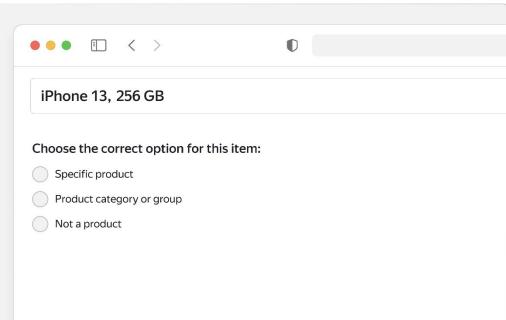
Crowdsourcing examples: use cases to improve search relevance

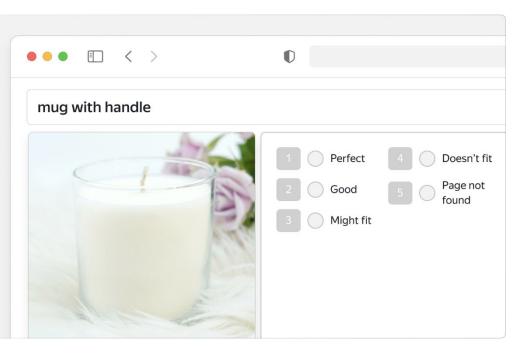
Side-by-side comparison of search results



Identify spam or irrelevant matches

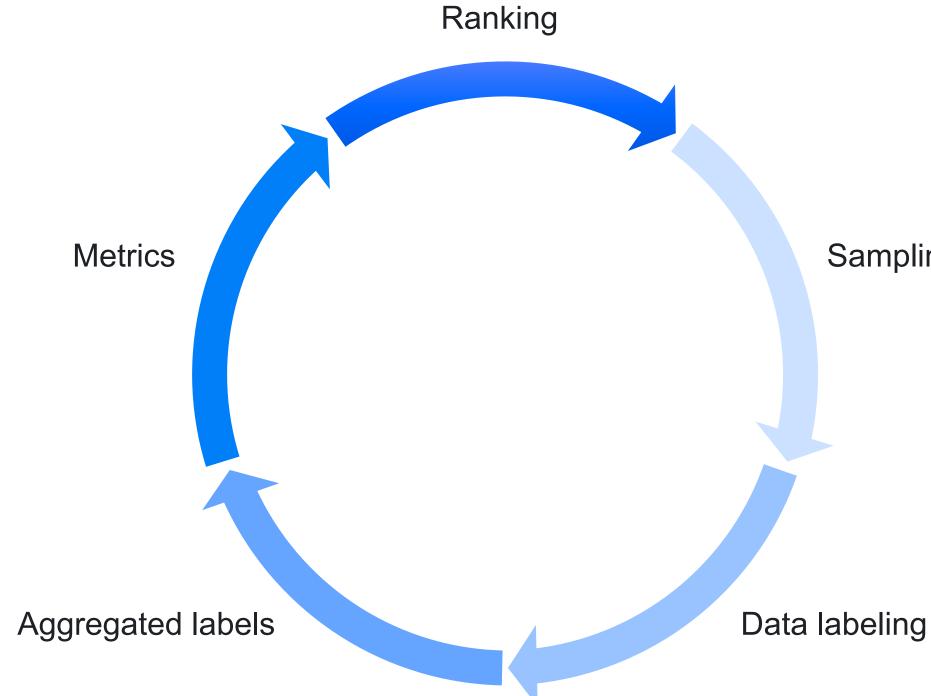
Classify type of search query (broad vs narrow)





Why this tutorial? Practice!

Human-in-the-Loop Pipeline for Offline Metrics



Sampling

Learning outcomes

Theory

- Offline approach for ranking evaluation
- Use crowdsourcing for industrial applications

Practice

- pipelines
- with real annotators
- (Toloka-Kit)

Build scalable data labeling

Run crowdsourcing projects

Program Human-in-the-Loop via public Python libraries

Tutorial Schedule

Part I Intro: 10 min Introduction

Part III: 20 min Human-in-the-Loop Essentials

Part II: 20 min Ranking and Quality Metrics Part IV: 50 min Hands-On Practice Session

> Coffee Break : 10 min

Part V: 30 min From Human Labels to Ground Truth

Part VI: 10 min Conclusion

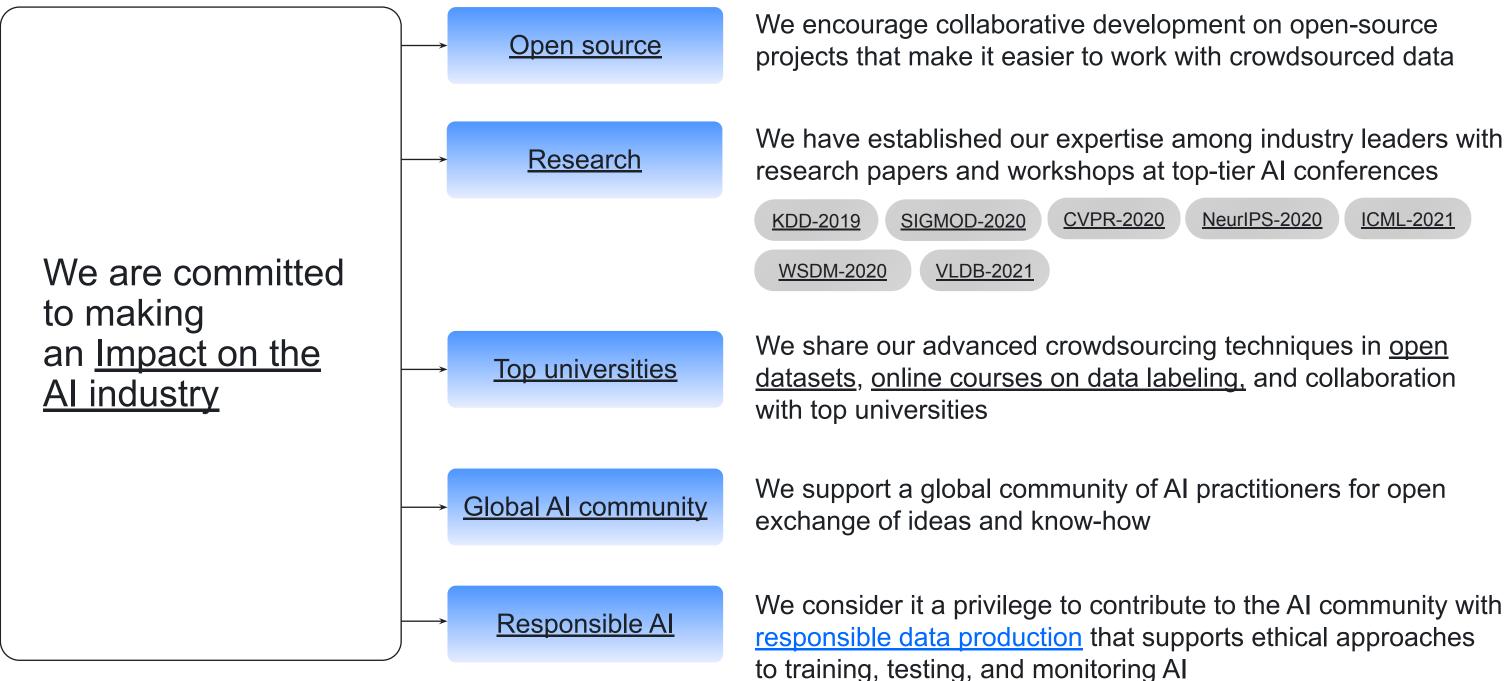
Toloka Research Grants Program

- We encourage the use of crowdsourcing for research purposes
- Recipients of the grant are awarded up to \$500 in credit to fuel their research



https://toloka.ai/grants/

Our team helps the AI industry



Join our Slack:

recsys 2022

https://bit.ly/3eYIX2P

Invite you to Toloka happy hour

21 September at 6 p.m.

Thank You!

Fedor Zhdanov

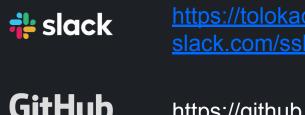
Head of Machine Learning at Toloka

fedorzh@toloka.ai

https://toloka.ai/events/recsys-2022/

https://www.linkedin.com/ company/toloka/

https://twitter.com/tolokaai



https://tolokacommunity. slack.com/ssb/

GitHub

https://github.com/Toloka