Part V

Theory on efficient aggregation, incremental relabeling, and pricing

Valentina Fedorova, Researcher

Project 1: Filter images

Does the image contain traffic signs?

Project 3: Verification

Are the bounding boxes correct?

Yes

No

Labeling data with crowdsourcing

- ► How to choose a reliable label?
- How many workers per object?
- ► How much to pay to workers?
- **...**

Evaluation of labeling approaches

- ► Labels with a maximal level of accuracy for a given budget or
- ▶ Labels of a chosen accuracy level for a minimal budget

Key components of labeling with crowds

Aggregation

Labeling data with crowds

Classify images

Upload multiple copies of each object to label

Workers assign noisy labels to objects

Aggregate multiple labels for each object into a more reliable one

Process results

Notation

- Categories k∈{1,...,K}. E.g.:
- ▶ Objects j∈{1,...,J}. E.g.:

- ▶ Workers: w∈{1,...,W}. E.g.:
 - W_j⊆{1,...,W} workers labeled object j

The simplest aggregation: Majority Vote (MV)

- ► The problem of aggregation:
 - Observe noisy labels

$$y = \{y_j^w | j = 1, ..., J \text{ and } w = 1, ..., W\}$$

- Recover true labels $z = \{z_j | j = 1, ..., J\}$
- ► A straightforward solution:

: 1 vote → MV: : 2 votes

$$\hat{\mathbf{z}}_{j}^{MV} = \arg\max_{\mathbf{v}=1,\dots,K} \sum_{\mathbf{w}\in\mathbf{W}_{j}} \delta(\mathbf{y} = \mathbf{y}_{j}^{\mathbf{w}}), \text{ where } \delta(\mathbf{A}) = 1 \text{ if A is true and 0 otherwise}$$

Performance of MV vs other methods

Properties of MV

All workers are treated similarly

All objects are treated similarly

Advanced aggregation: workers and objects

Parameterize expertise of workers by e^{w}

Parameterize difficulty of objects by d_i

Advanced aggregation: latent label models

Latent label models: noisy label model

A noisy label model $M_j^w = M(e^w, d_j)$ is a matrix of size $K \times K$ with elements

$$M_j^w[c,k] = Pr(Y_j^w = k | Z_j = c)$$

Latent label models: generative process

Noisy labels generation:

- ightharpoonup Sample z_i from a distribution $P_Z(p)$
- ► Sample y_j^w from a distribution $P_Y(M_i^w[z_j,\cdot])$

In multiclassification, a standard choice for $P_Z(\cdot)$ and $P_Y(\cdot)$ is a Multinomial distribution $Mult(\cdot)$

Latent label models: parameters optimization

- ightharpoonup Assumption: y_j^W is cond. independent of everything else given z_j , d_j , e^W
- ► The likelihood of y and z under the latent label model:

► Estimate parameters and true labels by maximizing L(...)

Latent label models: EM algorithm

Maximization of the expectation of log-likelihood (LL)*

$$\mathbb{E}_{\mathbf{z}}\log \Pr(\mathbf{y}, \mathbf{z}) = \sum_{\mathbf{j} \in \mathbf{J}} \sum_{\mathbf{z}_{\mathbf{j}} \in \{1, \dots, K\}} \Pr(\mathbf{z}_{\mathbf{j}} | \mathbf{p}) \log \prod_{\mathbf{w} \in \mathbf{W}_{\mathbf{j}}} \Pr(\mathbf{z}_{\mathbf{j}} | \mathbf{p}) \Pr(\mathbf{y}_{\mathbf{j}}^{\mathbf{w}} | \mathbf{z}_{\mathbf{j}}, \mathbf{d}_{\mathbf{j}}, \mathbf{e}^{\mathbf{w}})$$

► E-step: Use Bayes' theorem for posterior distribution of \hat{z} given p, d, e:

$$\hat{z}_j[c] = \Pr(Z_j = c|y, p, \mathbf{d}, \mathbf{e}) \propto \Pr(Z_j = c|p) \prod_{w \in W_j} \Pr(y_j^w|Z_j = c, \mathbf{d}_j, \mathbf{e}^w)$$

▶ M-step: Maximize the expectation of LL with respect to the posterior distribution of \hat{z} :

$$(p, d, e) = \operatorname{argmax} \mathbb{E}_{\hat{z}} \log \Pr(z_j|p) \prod_{w \in W_i} \Pr(y_j^w|z_j, d_j, e^w)$$

- Analytical solutions
- Gradient descent

* it is a lower bound on LL of y and z

Latent label model (LLM): special cases

- ▶ Dawid and Skene model (DS):
 - Categories are different
 - Objects are similar
 - Workers are different
- ► Generative model of labels, abilities, and difficulties (GLAD):
 - Categories are similar
 - Objects are different
 - Workers are different
- Minimax conditional entropy model (MMCE):
 - Categories are different
 - Objects are different
 - Workers are different

Dawid and Skene model (DS)

LLM with parameters:

- ► p vector of length K: p[i] = Pr(Z = c)
- e^w matrix of size $K \times K$: $e^w[c, k] = Pr(Y^w = k|Z = c)$
- ► Model:
 - Z_j ~Mult(p)
 - $y_j^w \sim Mult(e^w[z_j,\cdot])$

DS: parameters optimization

► E-step:

$$\widehat{z_j}[c] = \frac{p[c] \prod_{w \in W_j} e^w[c, y_j^w]}{\sum_k p[k] \prod_{w \in W_j} e^w[k, y_j^w]}, \qquad c = 1, ..., K$$

M-step: Analytical solution

$$\mathbf{e^{w}}[c,k] = \frac{\sum_{j \in J} \widehat{z_{j}}[c]\delta(y_{j}^{w} = k)}{\sum_{q=1}^{K} \sum_{j \in J} \widehat{z_{j}}[c]\delta(y_{j}^{w} = q)}, \qquad k, c = 1, ..., K$$

$$p[c] = \frac{\sum_{j \in J} \widehat{z_j}[c]}{J}, \qquad c = 1, ..., K$$

Generative model of Labels, Abilities, and Difficulties (GLAD)

LLM with parameters:

- ▶ Scalar $d_i \in (0, \infty)$
- ▶ Scalar $e^w \in (-\infty, \infty)$
- ▶ Model:

$$Pr(Y_j^W = k | \mathbf{Z}_j = c) = \begin{cases} a(w, j), & c = k \\ \frac{1 - a(w, j)}{K - 1}, c \neq k \end{cases}$$

where
$$a(w,j) = \frac{1}{1 + \exp(-e^{w}d_{j})}$$

GLAD: parameters optimization

► Let $a(w,j) = \frac{1}{1 + \exp(-e^w d_j)}$ and $P(z_j)$ be a predefined prior (e.g., $P(z_j) = \frac{1}{K}$)

► E-step:

$$\widehat{z_j}\left[c\right] \propto P\left(Z_j = c\right) \prod_{w \in W_j} a(w, j)^{\delta\left(y_j^W = c\right)} \left(\frac{1 - a(w, j)}{K - 1}\right)^{\delta\left(y_j^W \neq c\right)}, \ c = 1, \dots, K$$

► M-step: estimate (d, e) for given \hat{z} using gradient descent

$$(d^{t}, e^{t}) = \operatorname{argmax} \sum_{j \in J} \left[\mathbb{E}_{\widehat{z}_{j}} \log P(z_{j}) + \sum_{w \in W_{j}} \mathbb{E}_{\widehat{z}_{j}} \log Pr(y_{j}^{w}|z_{j}) \right]$$

MiniMax Conditional Entropy model (MMCE)

- ► LLM with parameters:
 - d_i matrix of size K × K
 - e^w matrix of size K × K
 - Noisy label model*

$$Pr(Y_j^W = k|Z_j = c) = exp(d_j[c, k] + e^W[c, k])$$

*The model was derived by minimizing the maximum conditional entropy of observed labels

$$\begin{aligned} \min_{Q} \max_{P} - \sum_{\substack{j \in J \\ c \in \{1, \dots, K\}}} Q\left(\underline{Z_j} = c\right) \sum_{\substack{w \in W \\ k \in \{1, \dots, K\}}} P\left(Y_j^w = k | \underline{Z_j} = c\right) \log P\left(Y_j^w = k | \underline{Z_j} = c\right) \end{aligned}$$

Summary of aggregation methods

	MV	DS	GLAD	MME
Categories (K)				
Objects (J)				
Workers (W)	\mathcal{N}^{1} \mathcal{N}^{1}	\mathcal{N}^{1} \mathcal{N}^{2} \mathcal{N}^{3}	\mathcal{N}^{1} \mathcal{N}^{2} \mathcal{N}^{3}	\mathcal{N}^{1} \mathcal{N}^{2} \mathcal{N}^{3}
Number of parameters	0	$WK^2 + K$	W + J	$(W + J)K^2$

Key components of labeling with crowds

Incremental relabeling aka dynamic overlap

Pool settings: dynamic overlap

Incremental relabeling problem

Obtain aggregated labels of a desired level of quality using a fewer number of noisy labels

Incremental relabeling scheme (IRL)

Request 1 label for each object

In real time IRL algorithm receives:

- (1) previously accumulated labels
- (2) new labels

Decides:

- (1) which objects are labeled
- (2) which objects to relabel

Repeat until all tasks are labeled

Notations

► Consider one object

▶ $z \in \{1, ..., K\}$ — latent true label

▶ $y_w \in \{1, ..., K\}$ — observed noisy label from worker w:

Notations

► Noisy label model for worker w:

$$M_w \in [0,1]^{K \times K}$$
: $Pr(Y_w = k | Z = c) = M_w[c, k]$

► Prior distribution: $Pr(Z = k) = p_k$

Posterior distribution

- $\qquad \qquad \left\{ y_{w_1}, ..., y_{w_n} \right\} \text{accumulated noisy labels} \\ \text{for the object}$
- Using Bayes rule:

$$\begin{split} & \Pr(\mathbf{Z} = \mathbf{k} | \{y_{w_1}, ..., y_{w_n}\}) \\ &= \frac{\Pr(\mathbf{Z} = \mathbf{k}) \Pr(\{y_{w_1}, ..., y_{w_n}\} | \mathbf{Z} = \mathbf{k})}{\Pr(\{y_{w_1}, ..., y_{w_n}\})} \\ &= \frac{p_k \prod_{i=1}^n M_{w_i} [\mathbf{k}, y_{w_i}]}{\sum_{t=1}^K p_t \prod_{i=1}^n M_{w_i} [t, y_{w_i}]} \end{split}$$

Expected accuracy of aggregated labels

- ► Let A be an aggregation model, e.g. MV, DS, GLAD,...
- ▶ Denote aggregated label $z^A = A(\{y_{w_1}, ..., y_{w_n}\})$
- Expected accuracy of aggregated labels given noisy labels is

$$E(\delta(z=z^A)|\{y_{w_1},...,y_{w_n}\}) = Pr(z=z^A|\{y_{w_1},...,y_{w_n}\})$$

 $\qquad \text{Stop labeling if } E \big(\delta(z=z^A) \big| \big\{ y_{w_1}, \dots, y_{w_n} \big\} \big) \geq C$

Incremental relabelling algorithm

```
Input: U_{t=1}^{T-1} Y^t — previous labels till step T Y^T — new labels
```

Output: R — objects to relabel

Threshold in IRL: cost – accuracy trade-off

How to obtain a cost-accuracy plot

Data for the plot:

- ▶ Label a pool of objects with a redundant overlap (e.g., 10)
- ► Obtain ground truth labels for the objects (e.g., expert labels or MV labels)

Simulate IRL with different thresholds using the data:

- ► For each threshold c from a grid $0 < c_0 < ... < c_m \le 1$
- ► Repeat N times:
 - 1. Shuffle noisy labels and fix the order of labels
 - 2. Draw labels sequentially and test the IRL condition after each label
 - 3. Once the IRL condition for an object is met, discard unused labels for the object
 - 4. When all objects are labelled calculate
 - accuracy of aggregated labels
 - cost as the fraction of used noisy labels
- Average N values of aggregated accuracy and N values of cost for each value of threshold c

Key components of labeling with crowds

Performance-based pricing aka dynamic pricing

Pool settings: dynamic pricing

Labeling as a game: notation

Labeling as a game: formalization

► Each worker w chooses a level of effort h for labeling object to maximize earnings per unit of spent effort:

► The requester chooses a pricing p(a) to minimize payments per unit of obtained value

$$\frac{v(a)}{p(a)} \to \max_{a \in [0,1]}$$

Labeling as a game: incentive compatible pricing

 \blacktriangleright Assume $a_w(h)$ is a linear function of h:

$$a_w(h) = c_1h + c_0$$
Accuracy

Theorem: the requester and workers maximize their utility simultaneously if the pricing p(a) for each label is proportional to its accuracy a

Performance-based pricing in practice: settings

▶ Price p for the level of accuracy a_0 : $Pr(\hat{z} = z) \ge a_0$ E.g.:

 $\hat{q}_w = \Pr(y^w = z)$ — estimated quality level of worker w, e.g. the fraction of correct labels for golden set (GS):

16 correct GS among 20 $\hat{q}_w = 0.8$

100 correct GS among 100 $\hat{q}_w = 1$

Performance-based pricing in practice: settings

► Aggregation $\hat{z}_j^{wMV} = \arg\max_{y=1,...,K} \sum_{w \in W_j} \hat{q}_w \delta(y = y_j^w)$

▶ IRL algorithm is based on the expected accuracy of \hat{z}_{j}^{wMV}

Performance-based pricing in practice

- Pricing rules
- 1. If $\hat{q}_w \ge a_0$, then the price is p
- 2. Else find n:

$$\sum_{k=0}^{n/2} {n \choose k} \hat{q}_{w}^{n-k} (1 - \hat{q}_{w})^{k} \ge a_{0}$$

Expected accuracy for MV

The price is $^{p}/_{n}$

Key components of labeling with crowds

