Part IV

Setting up and running label collection projects

Olga Megorskaya, CEO

What you need for the practice session

We are starting the practice session

We also provide several copies of a printed version of the instruction

Did everybody receive this card?

Requester account that you received

You have Login+Password to sign in Toloka as a requester

The same account is given for several participants (a group)

- So, you can divide work on the project configuration within this group
- Or, each member of a group may work individually and create the whole pipeline by her/himself

Sign into Toloka as a requester

- 1. Go to https://toloka.ai
- 2. Click on "Sign in" in the topright corner
- 3. Use received Login+Password to sign in

Requester account that you received

You have Login+Password to sign in Toloka as a requester

The account of this requester has money

So, you will run your tasks on real crowd performers!

Practice: creating a real crowdsourcing pipeline

Now we will create a real simplified crowdsourcing pipeline

- To simplify the task, we ask you to:
- Highlight one type of objects
- Choose any type of object you want to highlight. For example, **Traffic signs**
- Use Bounding Boxes

6

Reminder: we implement and run our pipeline

You can divide work within a participant group

Step #6 (repeat until none rejected in Project #2)

Step #7 (repeat until none rejected in Project #2)

Part V

Theory on efficient aggregation, incremental relabeling, and pricing

Valentina Fedorova, Researcher

Project 1: Filter images

Does the image contain traffic signs?

Project 3: Verification

Are the bounding boxes correct?

Labeling data with crowdsourcing

- How to choose a reliable label?
- How many workers per object?
- ► How much to pay to workers?

Evaluation of labeling approaches

- Labels with a maximal level of accuracy for a given budget or
- Labels of a chosen accuracy level for a minimal budget

Key components of labeling with crowds

Aggregation

Labeling data with crowds

Classify images

Upload multiple copies of each object to label

- Workers assign noisy labels to objects
- Aggregate multiple labels for each object into a more reliable one

Process results

pool - closed Statistics Download results Control View operations Dawid-Skene aggregation model Aggregation by skill Pool tasks (file example for task uploading (tsv, UTF-8)) •• Image: Control Image: Control Statistics Image: Control Statistics Image: Control Statistics Image: Control Statistics Image: Control Image: Control Statistics Image: Control Image: Co	Projects Does the image contains traffic lights? pool					
POOL TASKS (File example for task uploading (tsv, UTF-8)) ● ▲ Upload ▲ Upload ▲ files ▲ Control ④ task ● Ot tasks ● Ot tasks ● Ot tasks ● Ot tasks	▶ pool — closed			Statistics Download results Equations	dit 🗸 🛛	
 Image: Preview Image: December 2 Image: December 2<th>POOL TASKS (File example for task uploading (ts</th><th>v, UTF-8)) ③</th><th></th><th>Dawid-Skene aggregation model Aggregation by skill</th><th></th>	POOL TASKS (File example for task uploading (ts	v, UTF-8)) ③		Dawid-Skene aggregation model Aggregation by skill		
30 task suites 0 training task 90 tasks 10 control task Done 30, accepted 30 View assignments	▲ Upload Lage files	Edit • Prev	N	100 %		
90 tasks	30 task suites	0 training task		Done 30, accepted 30		
	90 tasks	10 control task	0	View assignments	30	

Notation

- Categories $k \in \{1, ..., K\}$. E.g.:
- ► Objects j∈{1,...,J}. E.g.:

- Workers: $w \in \{1, \dots, W\}$. E.g.:
 - W_j⊆{1,...,W} workers labeled object j

The simplest aggregation: Majority Vote (MV)

► The problem of aggregation:

- Observe noisy labels $y = \left\{ y_j^w | \ j = 1, ..., J \text{ and } w = 1, ..., W \right\}$
- Recover true labels $z = \{z_j | j = 1, ..., J\}$
- A straightforward solution:

$$\hat{z}_{j}^{MV} = \arg \max_{y=1,...,K} \sum_{w \in W_{j}} \delta(y = y_{j}^{w})$$
, where $\delta(A) = 1$ if A is

s true and 0 otherwise

Properties of MV

All workers are treated similarly

All objects are treated similarly

Advanced aggregation: workers and objects

Parameterize expertise of workers by e^w

Parameterize difficulty of objects by d_i

Advanced aggregation: latent label models

Latent label models: noisy label model

A noisy label model $M_j^w = M(e^w, d_j)$ is a matrix of size $K \times K$ with elements

$$c, k] = Pr(Y_j^w = k | Z_j = c)$$

for each \boldsymbol{c}

Latent label models: generative process

Noisy labels generation:
 Sample z_j from a distribution P_Z (p)
 Sample y^w_j from a distribution P_Y(M^w_j[z_j,·])

In multiclassification, a standard choice for $P_Z(\cdot)$ and $P_Y(\cdot)$ is a Multinomial distribution Mult(\cdot)

Latent label models: parameters optimization

- ► Assumption: y_i^w is cond. independent of everything else given z_i , d_i , e^w
- ► The likelihood of y and z under the latent label model:

 \blacktriangleright Estimate parameters and true labels by maximizing L(...)

Latent label models: EM algorithm

Maximization of the expectation of log-likelihood (LL)*

$$\mathbb{E}_{z}\log \Pr(y, z) = \sum_{j \in J} \sum_{z_{j} \in \{1, \dots, K\}} \Pr(z_{j}|p) \log \prod_{w \in W_{j}} \Pr(z_{j}|p)$$

E-step: Use Bayes' theorem for posterior distribution of \hat{z} given p, d, e:

$$\hat{z}_j[c] = \Pr(Z_j = c|y, p, d, e) \propto \Pr(Z_j = c|p) \prod_{w \in W_j} \Pr(y_j^v)$$

• M-step: Maximize the expectation of LL with respect to the posterior distribution of \hat{z} :

$$(p, \mathbf{d}, \mathbf{e}) = \operatorname{argmax} \mathbb{E}_{\hat{z}} \log \Pr(z_j | p) \prod_{w \in W_j} \Pr(y_j^w | p)$$

- Analytical solutions
- Gradient descent

* it is a lower bound on LL of y and z

- $Pr(y_i^w|z_i, d_i, e^w)$
- $_{i}^{W}|Z_{i} = c, d_{i}, e^{W}$
- $|\mathbf{z}_{i}, \mathbf{d}_{i}, \mathbf{e}^{\mathbf{w}})$

Latent label model (LLM): special cases

Dawid and Skene model (DS):
Categories are different
Objects are similar
Workers are different

Generative model of labels, abilities, and difficulties (GLAD):
Categories are similar
Objects are different

• Workers are different

Minimax conditional entropy model (MMCE):

Categories are different Objects are different Workers are different

Dawid and Skene model (DS)

LLM with parameters:

- \blacktriangleright p vector of length K: p[i] = Pr(Z = c)
- \blacktriangleright e^w matrix of size K × K: $e^{w}[c,k] = Pr(Y^{w} = k|Z = c)$

 - $Z_i \sim Mult(p)$
 - $y_j^w \sim Mult(e^w[z_j, \cdot])$

DS: parameters optimization

► E-step:

$$\widehat{z_{j}}[c] = \frac{p[c] \prod_{w \in W_{j}} e^{w}[c, y_{j}^{w}]}{\sum_{k} p[k] \prod_{w \in W_{j}} e^{w}[k, y_{j}^{w}]}, \qquad c = 1$$

► M-step: Analytical solution

$$\mathbf{e}^{\mathbf{w}}[\mathbf{c},\mathbf{k}] = \frac{\sum_{j\in J} \widehat{z_j}[\mathbf{c}]\delta(\mathbf{y}_j^{\mathbf{w}} = \mathbf{k})}{\sum_{q=1}^{K} \sum_{j\in J} \widehat{z_j}[\mathbf{c}]\delta(\mathbf{y}_j^{\mathbf{w}} = \mathbf{q})}, \qquad \mathbf{k}, \mathbf{c} = \mathbf{k}$$

$$p[c] = \frac{\sum_{j \in J} \hat{z}_{j}[c]}{J}, \quad c = 1, ..., K$$

1, ..., K

= 1, ..., K

Generative model of Labels, Abilities, and Difficulties (GLAD)

Whitehill et al., Whose vote should count more: Optimal integration of labels from labelers of unknown expertise, 2009

$$= c) = \begin{cases} a(w,j), & c = k\\ \frac{1 - a(w,j)}{K - 1}, c \neq k \end{cases}$$
$$V,j) = \frac{1}{1 + \exp(-e^{w}d_{j})}$$

GLAD: parameters optimization

• Let $a(w,j) = \frac{1}{1 + \exp(-e^w d_i)}$ and $P(z_j)$ be a predefined prior (e.g., $P(z_j) = 1/K$)

► E-step:

$$\widehat{z_j}[c] \propto P(Z_j = c) \prod_{w \in W_j} a(w, j)^{\delta(y_j^w = c)} \left(\frac{1 - a(w, j)}{K - 1}\right)^{\delta(y_j^w)}$$

• M-step: estimate (d, e) for given \hat{z} using gradient descent

$$(d^{t}, e^{t}) = \operatorname{argmax} \sum_{j \in J} \left[\mathbb{E}_{\widehat{z}_{j}} \log P(z_{j}) + \sum_{w \in W_{j}} \mathbb{E}_{\widehat{z}_{j}} \log P(z_{j})$$

 $\delta(y_j^w \neq c)$, c = 1, ..., K

 $\operatorname{Pr}(y_j^w|z_j)$

MiniMax Conditional Entropy model (MMCE)

- LLM with parameters: • d_i — matrix of size K × K • e^{w} — matrix of size K × K

 - Noisy label model*

 $\Pr(Y_i^w = k | Z_i)$

conditional entropy of observed labels

 $min_Q max_P - \sum_{j \in J} Q$ c∈{1,...,K}

$$= c$$
) = exp(d_j[c, k] + e^w[c, k])

*The model was derived by minimizing the maximum

$$Q(Z_j = c) \sum_{\substack{w \in W \\ k \in \{1, \dots, K\}}} P(Y_j^w = k | Z_j = c) \log P(Y_j^w = k | Z_j = c)$$

Summary of aggregation methods

Key components of labeling with crowds

Incremental relabeling aka dynamic overlap

Pool settings: dynamic overlap

	Quality control	
	Add rules to get more accurate responses. All rules work independently.	
NON-AUTOMATIC ACCEPTANCE	No REVIEW PERIOD IN DAYS	
CAPTCHA FREQUENCY 🕜	None ~	
	Add Ovelity Control Dule	
	+) Add Quality Control Rule	
	Overlap	
	Specify how many performers you want to complete each task in the pool.	
OVERLAP		
DYNAMIC OVERLAP	Off	
Speed/quality ratio		
	Specify additional conditions for selecting performers by their rating in Toloka. This will improve quality, but may reduce the speed of task completion because there will be fewer performers available for completing tasks. Learn more	
	Top % Online Time	
	Specify the percentage of top-rated active users who can access tasks in the pool.	

Incremental relabeling problem

Obtain aggregated labels of a desired level of quality using a fewer number of noisy labels

Incremental relabeling scheme (IRL)

Request 1 label for each object

In real time IRL algorithm receives:(1) previously accumulated labels(2) new labels

Decides: (1) which objects are labeled (2) which objects to relabel

Repeat until all tasks are labeled

Notations

▶ $z \in \{1, ..., K\}$ — latent true label

▶ $y_w \in \{1, ..., K\}$ — observed noisy label from worker w:

Classify images:

Notations

► Noisy label model for worker w:

 $M_w \in [0,1]^{K \times K}$: $Pr(Y_w = k | Z = c) = M_w[c,k]$

• Prior distribution: $Pr(Z = k) = p_k$

Posterior distribution

{y_{w1},...,y_{wn}} — accumulated noisy labels
for the object

$$Pr(Z = k | \{y_{w_1}, ..., y_{w_n}\})$$

$$= \frac{Pr(Z = k)Pr(\{y_{w_1}, ..., y_{w_n}\} | Z = k)}{Pr(\{y_{w_1}, ..., y_{w_n}\})}$$

$$= \frac{p_k \prod_{i=1}^n M_{w_i}[k, y_{w_i}]}{\sum_{t=1}^K p_t \prod_{i=1}^n M_{w_i}[t, y_{w_i}]}$$

Expected accuracy of aggregated labels

- ► Let A be an aggregation model, e.g. MV, DS, GLAD,...
- Denote aggregated label $z^A = A(\{y_{w_1}, ..., y_{w_n}\})$
- Expected accuracy of aggregated labels given noisy labels is

$$E(\delta(z = z^{A})|\{y_{w_{1}}, ..., y_{w_{n}}\}) = Pr(z = z^{A}|\{y_{w_{1}}, ..., y_{w_{n}}\})$$

Incremental relabelling algorithm

Input: $U_{t=1}^{T-1} Y^{t}$ — previous labels till step T Y^{T} — new labels

Output: R — objects to relabel

For each object j with a label in Y^T : \leftarrow Object with a new label $z_i^M = M(U_{t=1}^T Y^t) \quad \longleftarrow$ Current aggregated label Expected accuracy $c_i = E(z_i = z_i^M | U_{t=1}^T Y^t) \leftarrow$ for the current aggregated label If $c_i < c$, then R = R U jParameter: c — threshold for expected accuracy

Threshold in IRL: cost – accuracy trade-off

- Optimal threshold c = 0.95
- A higher c does not increase accuracy
- Saving \approx 35% of noisy labels

How to obtain a cost-accuracy plot

Data for the plot:

- Label a pool of objects with a redundant overlap (e.g., 10)
- Obtain ground truth labels for the objects (e.g., expert labels or MV labels)

Simulate IRL with different thresholds using the data:

- For each threshold c from a grid $0 < c_0 < ... < c_m \le 1$
- Repeat N times:
 - 1. Shuffle noisy labels and fix the order of labels
 - 2. Draw labels sequentially and test the IRL condition after each label
 - 3. Once the IRL condition for an object is met, discard unused labels for the object
 - 4. When all objects are labelled calculate
 - accuracy of aggregated labels
 - cost as the fraction of used noisy labels
- Average N values of aggregated accuracy and N values of cost for each value of threshold c

Key components of labeling with crowds

Performance-based pricing aka dynamic pricing

Pool settings: dynamic pricing

POOL NAME (VISIBLE ONLY TO YOU)	Are there traffic lights in the picture?	\times
	✓ Use project description	
PUBLIC DESCRIPTION 📀		
	Add a private description	
	Price per task suite	
	You can add one or more tasks to the page. E page.	nter the total price for all tasks on the
PRICE IN US DOLLARS ?	0.07	FEE ?
	+ Dynamic pricing	
	Performers	Copy settings from
	Filter performers who can access the task. Toloka has users from different countries,	
	so don't forget to filter by language and regio	on. Learn more
ADULI CONTENT	Yes	
	Add filter	✓ Create skill

Labeling as a game: notation

Requester

Labeling as a game: formalization

Each worker w chooses a level of effort h for labeling object to maximize earnings per unit of spent effort:

$$\sum_{h \to \infty} \frac{p(a_w(h))}{h} \to \max_{h \ge 0}$$

• The requester chooses a pricing p(a) to minimize payments per unit of obtained value

$$\begin{array}{c} & & \\$$

Labeling as a game: incentive compatible pricing

• Assume $a_w(h)$ is a linear function of h:

$$a_w(h) = c_1 h + c_0$$
Accuracy

Theorem: the requester and workers maximize their utility simultaneously if the pricing p(a) for each label is proportional to its accuracy a

Performance-based pricing in practice: settings

▶ Price p for the level of accuracy a_0 : $Pr(\hat{z} = z) \ge a_0$ E.g.:

100 correct GS among 100 $\hat{q}_w = 1$

Performance-based pricing in practice: settings

• Aggregation
$$\hat{z}_{j}^{wMV} = \arg \max_{y=1,...,K} \sum_{w \in W_{j}} \hat{q}_{w} \delta(y = y_{j}^{w})$$

► IRL algorithm is based on the expected accuracy of \hat{z}_i^{wMV}

Performance-based pricing in practice

- 1. If $\hat{q}_{w} \ge a_{0}$, then the price is p
- 2. Else find n:

$$\underbrace{\sum_{k=0}^{n/2} \binom{n}{k} \hat{q}_{w}^{n-k} (1-\hat{q}_{w})^{k}}_{\checkmark} \geq a_{0}$$

Expected accuracy for MV

The price is p/n

 \Rightarrow n = ∞

0.3\$

0.02\$

0\$

Key components of labeling with crowds

Part VI

Discussion of results from the projects. Conclusions

Olga Megorskaya, CEO

Reminder: we implemented the pipeline

Project #1: Filter out photos without objects

Task

Does a photo contain objects of desired type?

Our results:

- 100 photos evaluated
- ► Within 4 min on real performers
- Cost: \$0.3 + Toloka fee

Project #2: Highlighting objects by rectangles

Task

Highlight each object of desired type by a bounding box

Our results:

- 67 photos processed
- Within 5.5 min on real performers
- ► Cost: \$0.67 + Toloka fee

Project #3: Accept correct bounding boxes

Task

Are the objects of desired type highlighted by the bounding boxes correctly?

Our results:

- ► 90 photos evaluated
- ► Within 5 min on real performers
- Cost: \$0.36 + Toloka fee

Statistics over the whole pipeline

- 100 photos processed to highlight desired objects
- ► Within 14.5 min on real performers
- ► Total cost: \$1.33 + Toloka fee
- Quality of the final result (via manual assessment):
 - Recall: 90% (measured on results of Project #1) •
 - Precision: 86% (measured on results of Project #2)

Afterparty: upgrade your pipeline

To obtain more comprehensive data

- Use Polygons instead of Bounding boxes
- Highlight more object types

To reduce costs

Use incremental relabeling aka Dynamic overlap

To improve quality

- Use dynamic pricing
- Add more Golden Sets and hints
- Experiment with aggregation methods
- Add training for workers

API of Toloka

API of Toloka

Allows you to automate all steps of our pipeline

Discover at: <u>https://yandex.com/dev/toloka/</u>

Crowdsource all types of data

Search Relevance

Generation of content

Speech Technologies

Moderation

Computer vision

References: Aggregation

- Dawid, A. P. and Skene, A. M, Maximum likelihood estimation of observer error-rates using the EM algorithm, Applied 1. statistics 1979
- 2. Whitehill, J., Wu, T., Bergsma, J., Movellan, J. R, Ruvolo, P. L, Whose vote should count more: Optimal integration of labels from labelers of unknown expertise}, NIPS 2009
- Zhou, D., Liu, Q., Platt, J. C., Meek, C., Shah, N. B., Regularized minimax conditional entropy for crowdsourcing, arXiv preprint 2015
- Raykar, V. C, Yu, S., Zhao, L. H, Valadez, G. H., Florin, C., Bogoni, L., Moy, L., Learning from crowds, JMLR 2010 4.
- Snow, R., O'Connor, B., Jurafsky, D., Ng, A. Y, Cheap and fast---but is it good?: evaluating non-expert annotations for 5. natural language tasks, EMNLP 2008
- Ruvolo, P., Whitehill, J., Movellan, J. R, Exploiting Commonality and Interaction Effects in Crowdsourcing Tasks Using 6. Latent Factor Models, NIPS '13 Workshop on Crowdsourcing: Theory, Algorithms and Applications
- 7. Faridani, S. and Buscher, G., LabelBoost: An Ensemble Model for Ground Truth Inference Using Boosted Trees, HCOMP 2013
- Welinder, P., Branson, S., Perona, P., Belongie, S. J, The multidimensional wisdom of crowds, NIPS 2010 8.
- Jin, Y., Carman, M., Kim, D., Xie, L., Leveraging Side Information to Improve Label Quality Control in Crowd-Sourcing, 9. **HCOMP 2017**
- 10. Imamura, H., Sato, I., Sugiyama, M., Analysis of Minimax Error Rate for Crowdsourcing and Its Application to Worker Clustering Model, arXiv preprint 2018

References: Aggregation

- 11. Sheshadri, A. and Lease, M., Square: A benchmark for research on computing crowd consensus, HCOMP 2013
- 12. Kim, H. and Ghahramani, Z., Bayesian classifier combination, AISTATS 2012
- 13. Venanzi, M., Guiver, J., Kazai, G., Kohli, P., Shokouhi, M., Community-based bayesian aggregation models for crowdsourcing, WWW2014
- 14. Vuurens, J., de Vries, A. P., Eickhoff, C., How much spam can you take? an analysis of crowdsourcing results to increase accuracy, SIGIR Workshop CIR 2011
- 15. Chen, X. and Bennett, P. N and Collins-Thompson, K. and Horvitz, E., Pairwise ranking aggregation in a crowdsourced setting, WSDM 2013
- 16. Liu, C. and Wang, Y., Truelabel+ confusions: A spectrum of probabilistic models in analyzing multiple ratings, ICML 2012

References: Incremental relabeling & Pricing

- 17. Ipeirotis, P. G and Provost, F. and Sheng, V. S and Wang, J., Repeated labeling using multiple noisy labelers, KDD 2014
- Abraham, I., Alonso, O., Kandylas, V., Patel, R., Shelford, S., Slivkins, A., How many workers to ask?: Adaptive exploration for collecting high quality labels, SIGIR 2016
- 19. Ertekin, S., Hirsh, H., Rudin, C., Learning to predict the wisdom of crowds, arXiv preprint 2012
- 20. Lin, C. H, Mausam, M., Weld, D. S, To Re(label), or Not To Re(label), HCOMP 2014
- 21. Zhao, L., Sukthankar, G., Sukthankar, R., Incremental relabeling for active learning with noisy crowdsourced annotations, PASSAT/SocialCom 2011
- 22. Wang, J., Ipeirotis, P. G, Provost, F., Quality-based pricing for crowdsourced workers, working paper, 2013
- 23. Cheng, J., Teevan, J., Bernstein, M. S, Measuring crowdsourcing effort with error-time curves, CHI 2015
- 24. Ho, C., Slivkins, A., Suri, S., Vaughan, J. W., Incentivizing high quality crowdwork, WWW 2015
- 25. Difallah, D. E., Catasta, M., Demartini, G., Cudr`e-Mauroux, P., Scaling-up the crowd: Micro-task pricing schemes for worker retention and latency improvement, HCOMP 2014
- 26. Yin, M., Chen, Y., Sun, Y., The effects of performance-contingent financial incentives in online labor markets, AI 2013
- 27. Shah, N., Zhou, D., Peres, Y., Approval voting and incentives in crowdsourcing, ICML 2015
- [26] Shah, N. and Zhou, D., No oops, you won't do it again: Mechanisms for self-correction in crowdsourcing, ICML 2016

g multiple noisy labelers, KDD 2014 workers to ask?: Adaptive exploration

in online labor markets, AI 2013 2015

References: Tutorials

- 27. Crowdsourcing: Beyond Label Generation, Vaughan, J. W. KDD 2017
- 28. Crowd-Powered Data Mining, Li, G., Wang, J., Fan, J., Zheng, Y., Chai, C., KDD 2018
- 29. Social Spam Campaigns Social Spam, Campaigns, Misinformation and Crowdturfing, Lee, K., Caverlee, J., Pu, C., WWW2014
- 30. From Complex Object Exploration to Complex Crowdsourcing, Amer-Yahia, S., Roy, S.B., WWW 2015
- 31. Crowdsourced Data Management: Overview and Challenges, Li, G., Zheng, Y., Fan, J., Wang, J., Cheng, R, SIGMOD 2017
- 32. Spatial Crowdsourcing: Challenges, Techniques, and Applications, Tong, Y., Chen, L., Shahab, C., VLDB 2016
- 33. Truth Discovery and Crowdsourcing Aggregation: A Unified Perspective, Gao, J., Li, Q., Zhao, B., Fan, W., Han, J., VLDB 2015
- 34. Data-Driven Crowdsourcing: Management, Mining, and Applications, Chen, L., Lee, D., Milo, T., ICDE 15