

Web Engineering with Human-in-the-Loop

Dmitry Ustalov, Nikita Pavlichenko, Boris Tseytlin, Daria Baidakova and Alexey Drutsa

ICWE 2022 hands-on tutorial

Part II Ranking and Quality Metrics

Dr. Dmitry Ustalov, Head of Research

Tutorial Schedule

Plan

- 1. Introduction
- 2. Signals
- 3. Metrics 8. Datasets
- 4. How to Sample Queries? 9. Literature
- 5. Real Life Examples

6. What Can Go Wrong? 7. Why Crowdsourcing?

Why use offline quality evaluation?

Why we use offline

- 1. Online tests are not enough:
- Implicit signal
- Delayed response
- Slow experimentation

7

Why we use offline

2. DSAT (Dissatisfaction Analysis):

- Why users are dissatisfied
- What's exactly wrong with our service
- Insights for improvement

Why we use offline

3. Users are prone to manipulation:

- Clickbait
- Fraud
- Other manipulations

Why you might want offline

2

Baseline for product launch

Poor quality = zero retention

Detect malfunction before release

Saves money and reputation

Draw insights

Where and how to improve your service

How to measure quality in offline setting?

Model

- ► Assume we have a user *u* who interacts with a service by sending some sort of a query q
- Service respondes to query q with array of objects r_1, \ldots, r_n (or a single object r_1)

Model

What we need to do

- 1. Evaluate every response object r_i with some quality measure s_i (create a signal)
- 2. Aggregate s_i to overall measure of quality (create a metric)

Signals

Model

Examples

2

Search engine

- ► Text search
- ► Image search
- Ecommerce goods search

Recommendations

- Music feed
- Content feed
- Social media feed

Moderation

- Service quality assurance
- Social media business account behavior

Signals

In order to calculate metric, we need to estimate response objects.

It can be done through multiple approaches

- Pointwise
- Listwise
- ► Pairwise

Signals are usually obtained through experts or crowdsource platforms, less commonly — from precomputed data

Pointwise

Given a query q and a single response r_i , we can judge how well does this object match to a user query

Pointwise

Examples

Binary relevance

► 1 or 0

Multiple grade relevance

- ► Relevant
- Semi-relevant
- ► Non-relevant
- ► Etc.

Match score from 0 to 100%

Listwise

Order all objects at once and use ranks as signal Useful in training ML algorithms

Pairwise

Pointwise is of low resolution, listwise is inconsistent Pairwise comparisons tackle both of this problems, they are a perfect example of task decomposition.

Which one?

- In the beginning, use
 pointwise as baseline
- 2. When you have a working service, use **pairwise** (for incremental improvements)

We will focus on pointwise evaluation in our practice, but later we will show how to address the more advanced pairwise setting.

Metrics

From signal to metric — how to aggregate?

Ranking metrics

- 1. Mean Average Precision (mAP) measures trade-off between precision and recall going down through service response
- 2. Normalized Discounted Cumulative Gain (nDCG) measures quality of objects with discount factor
- 3. Expected Reciprocal Rank (ERR) is a cascade model of user interaction with service response

Let us recall some definitions from binary classifier ($s_i \in \{0, 1\}$):

Precision =
$$\frac{TP}{TP + FP}$$

Recall = $\frac{TP}{TP + FN}$

Actual Class

Precision@k and Recall@k: precision and recall over top-k elements

How precision and recall changes going down the list?

- 1. Recall increases (non-decreasing function)
- 2. Precision can be arbitrary

Area under precision-recall curve is:

- Maximum for perfect order (positive objects on top, negative on bottom)
- 2. Minimum for the worst order

We can define precision as function of recall p(r)

Precision

We can define Average Precision as the following:

$$AP = \int_0^1 p(r) dr.$$

r is recall p(r) is precision

AP is the area under precision-recall curve (**precision-recall AUC**)

In a simple discrete case, previous equation can be transformed into:

$$AP = \sum_{i=1}^{n} Precision@i \cdot \Delta Reco$$

where $\Delta Recall@i=Recall@i-Recall@(i-1)$

all@i,

Since $\Delta Recall@i$ is positive iff included object is true positive, we can simplify AP to

$$AP = \frac{1}{n} \sum_{i=1}^{n} Precision@i[s_i = 1].$$

Mean average precision is defined as mean AP over set of queries:

$$mAP = \frac{1}{Q} \sum_{q} AP(q).$$

- Good ranking puts the best objects on top
- Idea: sum signal values of ordered response with some discounter
- The lower the object, the lower its impact on metric is

We can define discounted cumulative gain (DCG³) as following:

$$DCG@k = \sum_{i=1}^{k} \frac{S_i}{d(i)},$$

where d(i) is a discounting factor

3. Cumulated gain-based evaluation of IR techniques https://doi.org/10.1145/582415.582418

Example of discounters:

Linear: *i*

Logarithmic: $\log_2(i+1)$

Exponential: 2^{*i*}

Raw DCG cannot be compared between queries, normalization is required

To align values of DCG we can normalized it by ideal DCG.

$$IDCG@k = \sum_{i=1}^{k} \frac{S(i)}{d(i)},$$

where $s_{(i)}$ is i-th object with largest signal available

Thus, nDCG is defined as following:

$nDCG@k = \frac{DCG@k}{IDCG@k}$

Now values are between 0 and 1 and thus cross-query comparable

mAP and nDCG metrics

- 1. Gain profit even on lower positions
- 2. When user has found answer, everything else doesn't matter

Improvement: cascade model

result

2. The lower user has to go, the worse performance of a ranker is

1. User go down the ranked list until he finds satisfying

Yandex	expected reciprocal rank	\otimes	Search
	Web Images Video Maps		
[Expected reciprocal rank / Хабр habr.com > ru/company/econtenta/blog/303458/ ▼		2 mill
	Expected Reciprocal Rank lingpipe-blog.com >zhangexpected-reciprocal-rank 2009. Expected reciprocal rank for graded relevance Expected reciprocal rank is based on the cascade model of search (there are citations in the paper). Read more >	E	Expl
	W Mean reciprocal rank - Wikipedia en.wikipedia.org > Mean reciprocal rank • The mean reciprocal rank is a statistic measure for evaluating any process that produces a list of possible responses to a sample of queries, ordered by probability of correctness. The reciprocal rank of a query response is the multiplicative inverse of the Read more >		rrele
	(PDF) Expected reciprocal rank for graded relevance researchgate.net >Expected_reciprocal_rank_for ▼ cal rank to the graded relevance case and we call this metric Expected Reciprocal For more than two correlation or matching levels for measuring a ranking result, the expected reciprocal rank [82] and normalized discounted cumulative gain Read more >		Drig
	 Expected reciprocal rank for graded relevance Proceedings dl.acm.org > doi/10.1145/1645953.1646033 Home Conferences CIKM Proceedings CIKM '09 Expected reciprocal rank for graded relevance Rank-biased precision for measurement of retrieval effectiveness. ACM Trans. Inf. Read more > 	<u> </u>	
	Expected Reciprocal Rank for Graded Relevance - PDF docplayer.net > 20782422-Expected-reciprocal-rank ▼ The Expected Reciprocal Rank is a cascade based metric with φ(r) = /r. It may not seem straightforward to compute ERR from the previous definition because there is an expectation. However it can easily be computed as follows: ERR := r= P Read more >		Skip
	itnan.ru/post.php?c=1&p=303458 itnan.ru > post.php?c=1&p=303458 ▼		
	GitHub - skondo/evaluation_measures: Framework that github.com > skondo/evaluation_measures ▼ 2009. Expected reciprocal rank for graded relevance. In Proceedings of the 18th ACM conference on Information and knowledge management (CIKM '09). Read more >		

illion results found

lanations

evant

ginal er

ped

Suppose we have signal values s_i

- 1. Map s_i to probability of finding answer R_i
- Use it to model termination rank (on which position the user will stop)

Probability of user terminating their session on rank k equals to

$$P(k) = R_k \prod_{i=1}^{k-1} (1 - R_i),$$

where R_i — probability of user to find answer on rank *i*. Use 1/s to have a metric with semantic "higher is better":

$$ERR^{4} = \sum_{k=1}^{n} \frac{1}{k} R_{k} \prod_{i=1}^{k-1} (1 - R_{i}).$$

4. Expected reciprocal rank for graded relevance https://dl.acm.org/doi/10.1145/1645953.1646033

A few months earlier, another cascade metric was proposed, pFound⁵:

$$pFound = \sum_{i=1}^{n} pLook_i \cdot R_i,$$

where:

- 1. $pLook_i = pLook_{i-1} \cdot (1-R_{i-1}) \cdot (1-pBreak)$ probability that user will interact with object *i*:
 - ► User looked at object i-1
 - Did not found answer
 - Continued his search
- 2. *pBreak* probability of ending session

What queries to use in offline evaluation?

- ► Beak, simple queries
- Easy to process
- Affect lots of users

Unique queries?

- Tail, usually hard or ambiguous
- Huge amount (30%– 70% depending on service)

Something in the middle?

Simple idea: take a random sample

- 1. Flip a coin with a probability 2. *p* on every object
- ► Heads use query
- ► Tails skip
- On average, $p \cdot N$ queries will be sampled

- - sampled

No guarantee that popular queries will be presented in sample

More sophisticated reservoir sampling⁶:

Every object is considered Exactly *k* objects will be

Stratified sampling:

- Each query q_i has frequency f_i
- Order queries by f_i and split them in k buckets Q_k s.t.

$$\begin{split} & \sum_{m \in Q_i} f_m \approx \sum_{k \in Q_j} f_k \ \forall i, j, \\ & \forall i < j \Rightarrow f_m < f_k \ \forall m \in Q_i, k \in Q_j. \end{split}$$

After that, sample the necessary amount from every bucket

Guarantees that queries of all frequencies will be presented in a sample

Query frequency distribution

Real Life Examples

Metric purpose

- 1. Service quality monitoring (KPI metric): when you need to track what is going on with your service
- 2. Target for supervised learning: for training machine learning algorithms
- 3. Acceptance metric: final validation before the release of new features

KPI

- 1. Motivate to increase quality
- 2. Respectively react to releases
- 3. Stable
- 4. Reliable
- 5. Regular measurements

Target for ML

- 1. Most informative
- 2. Huge volume
- 3. Suitable for trained models

Acceptance

- 1. Very fast
- 2. Before release
- 3. Offline A/B

SYSTEMS >	» 754432		2 769701 pers = 7678 769706 pers = 7678.		= 7678	769711 pers = 7678		769717 pers = 7678		769723 pers = 7678		769320 pers = 7678		769331 pers = 7678		
	VALUE	% DIFF	VALUE	% DIFF	VALUE	% DIFF	VALUE	% DIFF	VALUE	% DIFF	VALUE	% DIFF	VALUE	% DIFF	VALUE	% DIFF
	1.9491	+0.01%	1.96	+0.57%	1.9467	-0.12%	1.9546	+0.29%	1.9505	+0.08%	1.9639	+0.79%	1.9532	+0.22%	1.9558	+0.35%
	2.2808	+0.01%	2.2969	+0.72%	2.2787	-0.08%	2.2897	+0.40%	2.2838	+0.14%	2.3023	+0.97%	2.288	+0.33%	2.292	+0.50%
	0.8548	-0.01%	0.8535	-0.15%	0.855	+0.03%	0.854	-0.09%	0.8546	-0.02%	0.8531	-0.20%	0.8538	-0.12%	0.8534	-0.16%
	1.3051	+0.01%	1.3101	+0.39%	1.301	-0.31%	1.3066	+0.12%	1.3041	-0.07%	1.3128	+0.62%	1.3051	+0.01%	1.3075	+0.20%
	1.2655	+0.01%	1.2738	+0.67%	1.264	-0.11%	1.27	+0.37%	1.267	+0.13%	1.2766	+0.91%	1.2687	+0.26%	1.2709	+0.43%
	0.917	+0.01%	0.9263	+1.02%	0.9193	+0.26%	0.9234	+0.70%	0.9206	+0.40%	0.9284	+1.26%	0.9236	+0.73%	0.9244	+0.82%
	2.1825	+0.01%	2.2001	+0.82%	2.1834	+0.05%	2.1934	+0.51%	2.1876	+0.24%	2.205	+1.06%	2.1923	+0.46%	2.1953	+0.59%
	0.0983	+0.02%	0.0968	-1.48%	0.0953	-2.98%	0.0963	-2.00%	0.0961	-2.16%	0.0973	-0.98%	0.0957	-2.53%	0.0967	-1.54%
	1.8921	+0.01%	1.9065	+0.77%	1.8901	-0.10%	1.9009	+0.47%	1.8953	+0.17%	1.9112	+1.04%	1.8964	+0.24%	1.9001	+0.43%

What Can Go Wrong?

What can go wrong

Ambiguity and clarity

Example: "local language is more preferable than foreign language"

What went wrong: international porn sites were penalized \otimes

Result: service quality decreased

Moral: avoid ambiguity

What can go wrong

Nothing is perfectly reliable!

Basic checks: input and output, presence of judgements, service availability

Advanced checks: A/A testing, comparison with previously known verdicts, re-evaluations, DSAT

Initially: in-house experts (assessors)

Pros

- Trusted
- Can perform sensitive tasks (signed NDA)
- Easy to train/ control/interact

Cons

- Expensive
- ► Hard to scale

What is crowdsource?

- 1. Lots of annotators
- 2. Easy to scale
- 3. Easy to add and remove annotators

Need to control quality Open market, compete for annotators

It is possible to replicate in-house annotation processes with crowdsourcing!

- 1. Same quality
- 2. Cheaper
- 3. More scalable, higher performance
- 4. Quality control via in-house pipeline
- 5. Relevance assessment in pairwise setting

References

Where to read more

- 1. A Short Survey on Online and Offline Methods for Search Quality Evaluation
- 2. Pairwise comparisons https://ieeexplore.ieee.org/abstract/document/6120246
- 3. Just sort it https://arxiv.org/abs/1502.05556
- 4. Cumulated gain-based evaluation of IR techniques https://doi.org/10.1145/582415.582418
- 5. ERR http://dx.doi.org/10.1145/1645953.1646033
- 6. pFound <u>http://romip.ru/romip2009/15</u> yandex.pdf https://catboost.ai/docs/references/pfound.html
- 7. Reservoir sampling <u>http://www.cs.umd.edu/~samir/498/vitter.pdf</u>

Datasets

- 1. Text REtrieval Conference Data <u>https://trec.nist.gov/data.html</u>
- 2. Toloka Relevance 2 & Relevance 5 https://toloka.ai/datasets

Join our Slack: icwe_tutorial channel

Dr. Dmitry Ustalov

Head of Research

dustalov@toloka.ai

https://toloka.ai/events/icwe-2022/

