業 Toloka

Web Engineering with Human-in-the-Loop

Dmitry Ustalov, Nikita Pavlichenko, Boris Tseytlin, Daria Baidakova and Alexey Drutsa

Part I Introduction

Alexey Drutsa, deputy CEO, COO at Toloka

Tutorial Schedule

Part I Intro: 45 min

The Role of HITL in building Search Engines

Part II: 45 min

Ranking and Quality Metrics

Coffee Break: 30 min

Part III: 45 min

Human-in-the-Loop Essentials

Part IV: 45 min

Practice: Websites relevance

Lunch Break: 90 min

Part V: 45 min

Results aggregation and implementation into ML pipeline

Part VI: 90 min

Metric Computation

Coffee Break: 30 min

Part VII: 90 min

Results discussion and conclusion

Data-driven web services

Cases of leveraging data to provide modern web services and products

Systems for web services

Recommendation systems

Search relevance

Translation to different languages

Reviews moderation

Voice Assistants

Speech to Text & Text to Speech

Verifying voice assistant responses

Recording activation phrases

NLP tasks

Text classification

Sentiment analysis

Intent classification

Named entity recognition

Field data collection

Verifying addresses

Verifying business hours

Monitoring products on retail shelves

Computer vision tasks

Object detection

Image segmentation

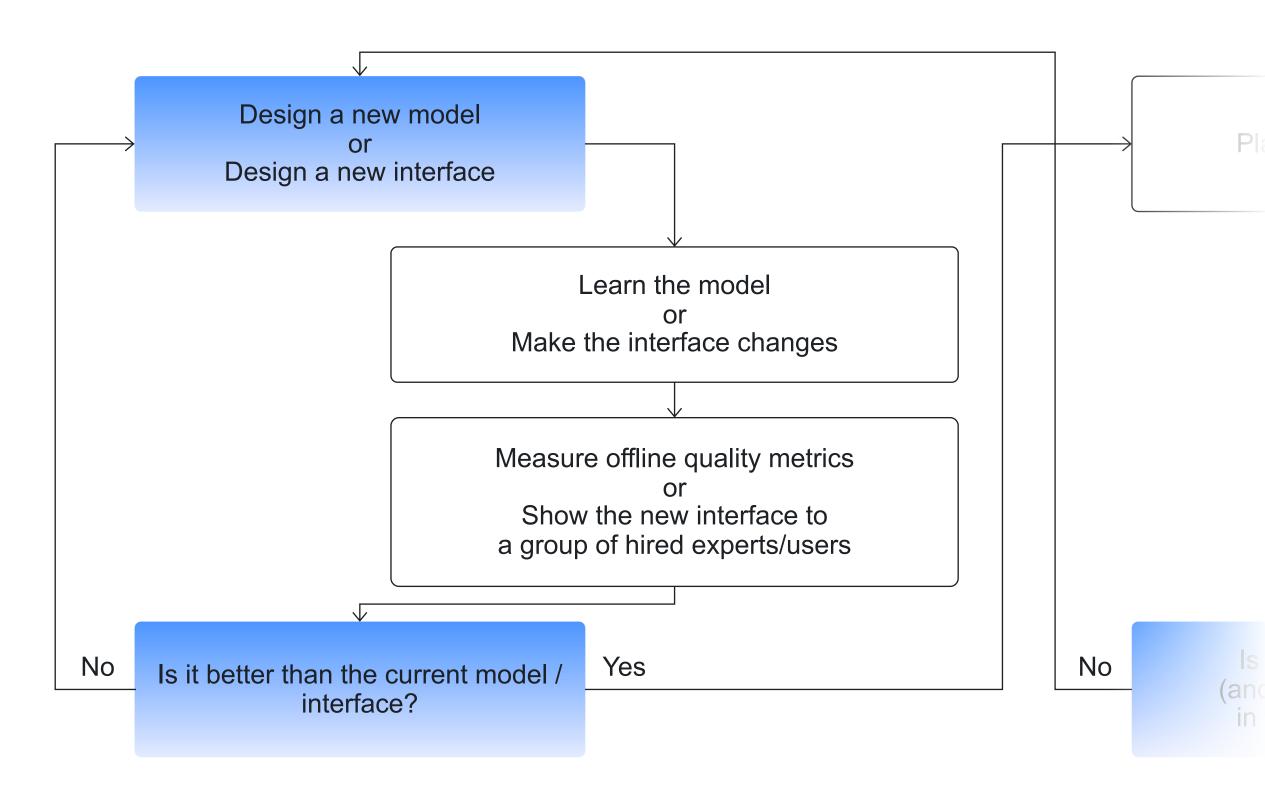
Image classification

Image transcription

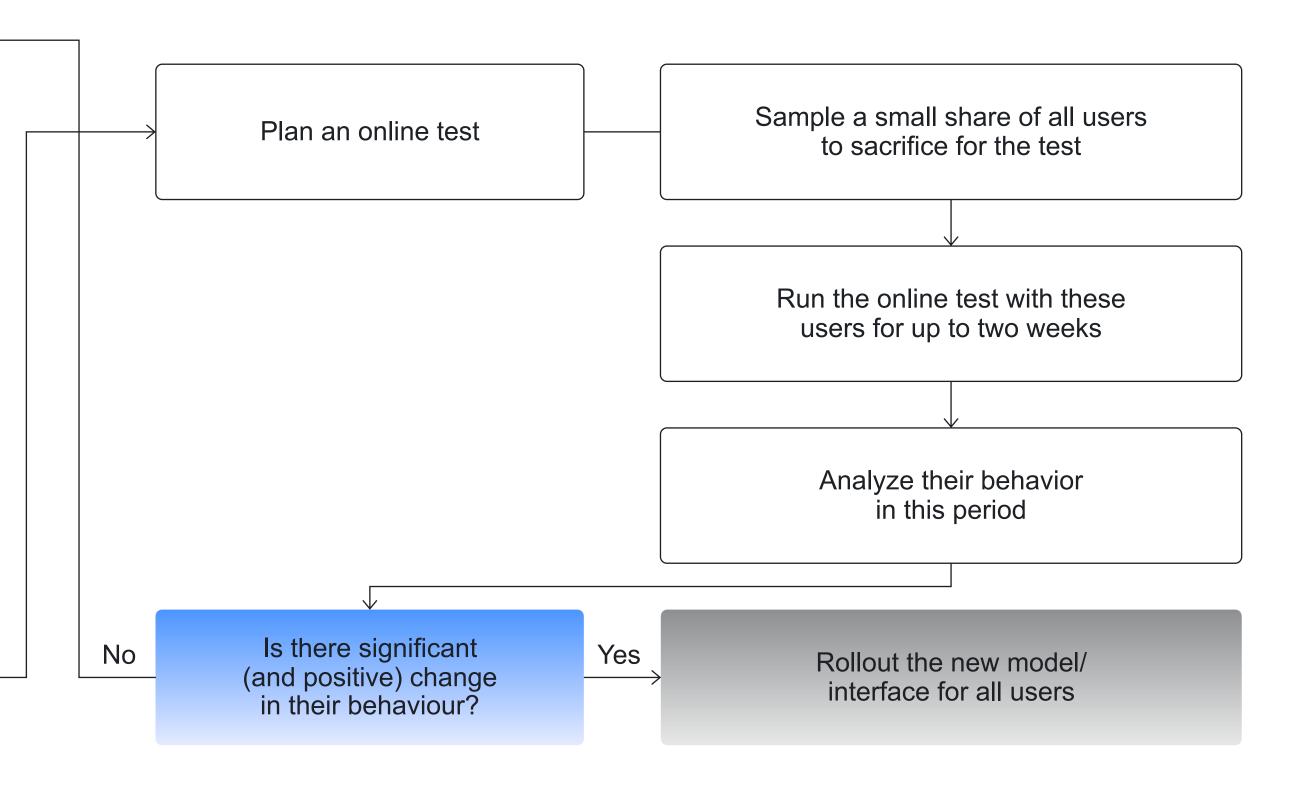
Side-by-side comparison

Image and video collection

Scheme of web service evaluation



Scheme of web service evaluation



Pros and cons of online and offline metrics

How labeled data is used

- Calculating offline metrics to evaluate how a model is performing
- Training ML models and choosing the best model version

Offline metrics measured with data labeling

Pros

- Clear signal
- Measures designated product characteristics
- + Fast results

Cons

Fast results

- Not actual users (not always a representative sample)
- Can't measure business metrics

Online metrics measured with A/B tests

Pros

- Results from real users
- Measures business metrics (clicks, dwell time, leakage)

Cons

- Implicit signal
- Delayed response
- Slow results (long experiments)
- Clickbait
- Fraud

Evaluation

Offline eval

Covered in this tutorial

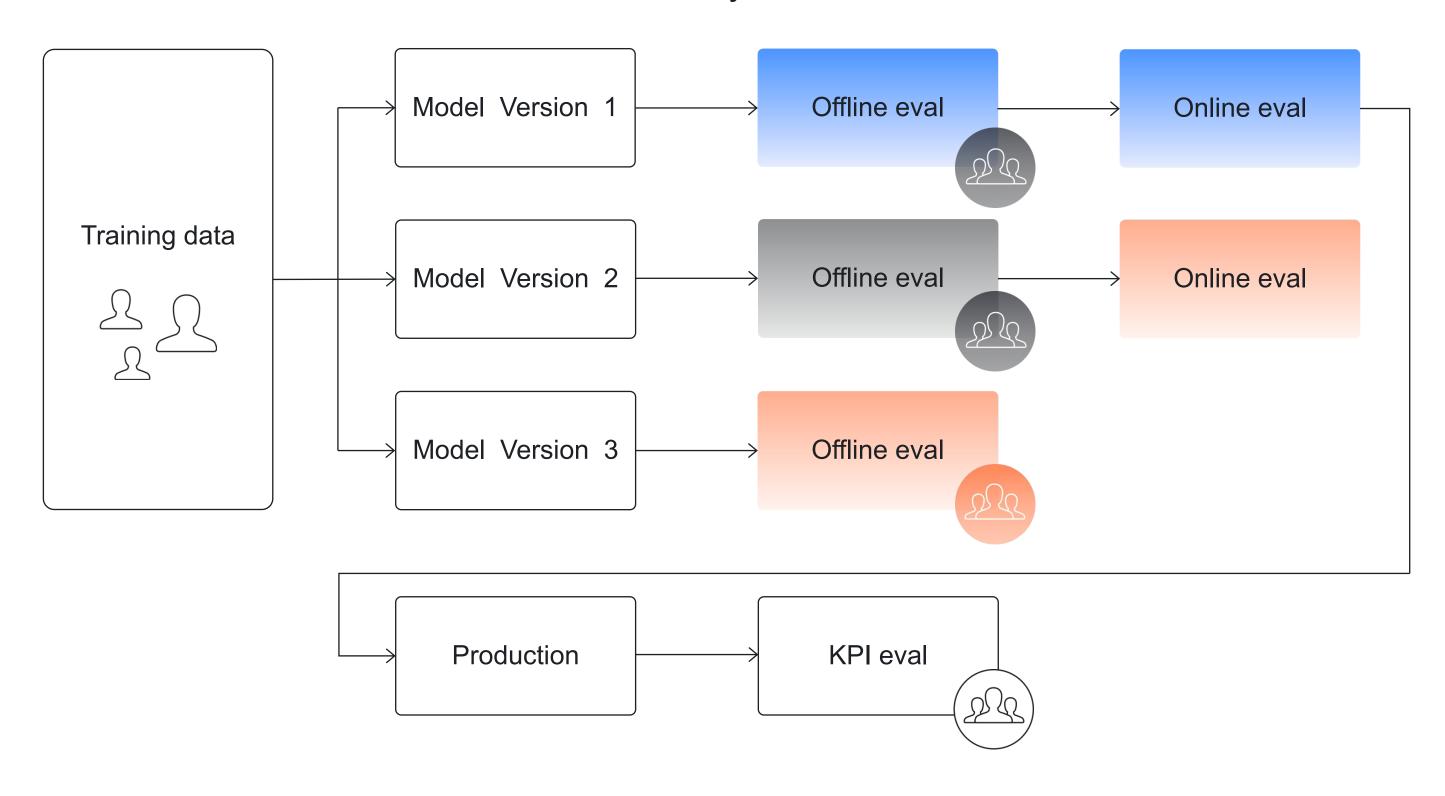
Online eval

E.g., see our tutorials

- ► At TheWebConf 2018
- ► At KDD 2018
- ► At SIGIR 2019

ML production pipeline: Humans are in the Loop!

Evaluation metrics are available within days or even hours



The faster you iterate to improve the processes and the pipeline the faster you improve quality

To accelerate web service improvement, you need

To accelerate experiments, you need

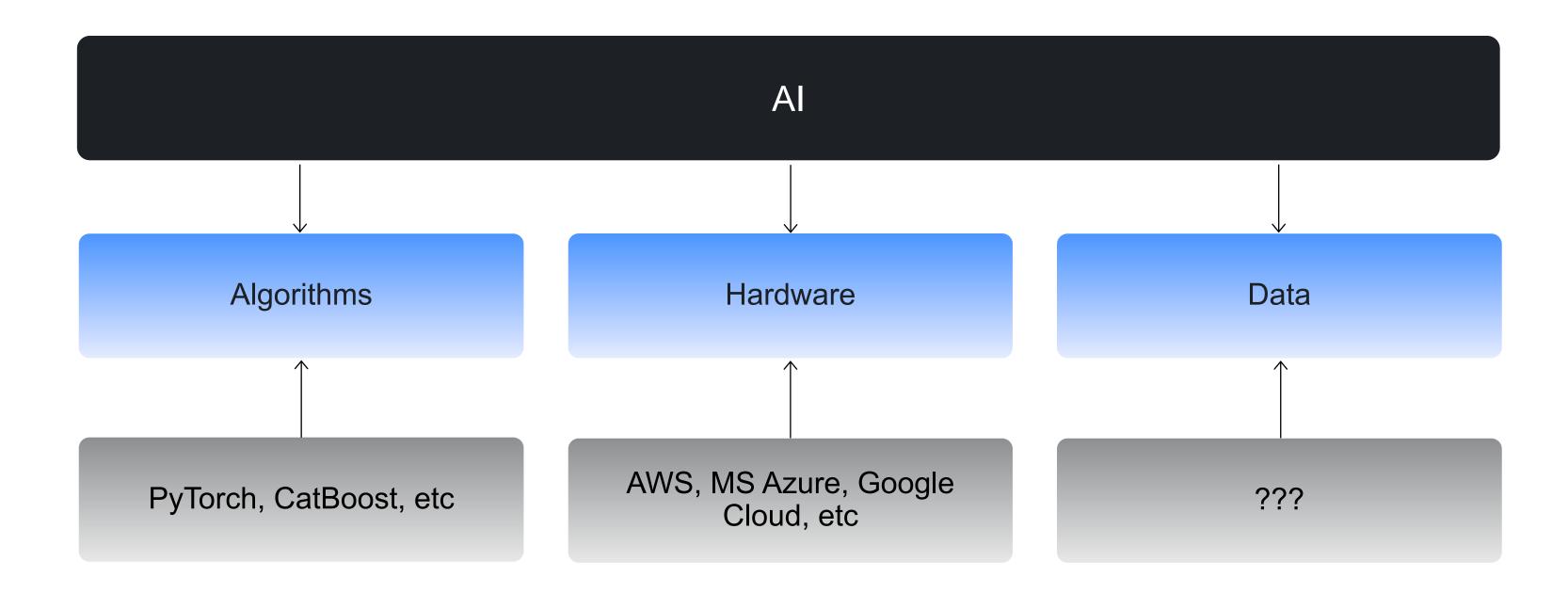
To have fast data iterations, you need ...

The critical needs of an engineer to build effective human-in-the-loop processes

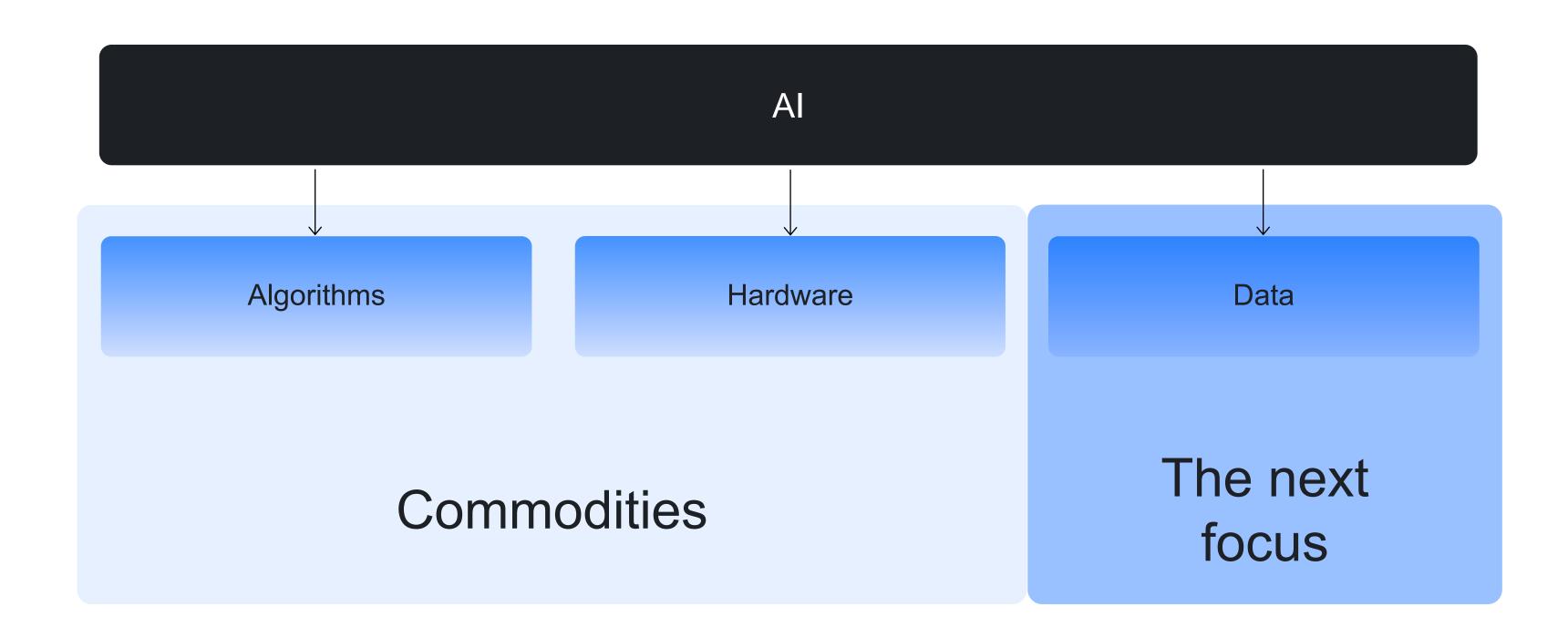
- 1. Direct hands-on access to make changes and improve processes
- 2. Integrated environment to work both with algorithms and humans
- Ability to use the same programing language (e.g., Python and libraries)
- Ability for easy integration (API)

Automation: long-term effects and trends

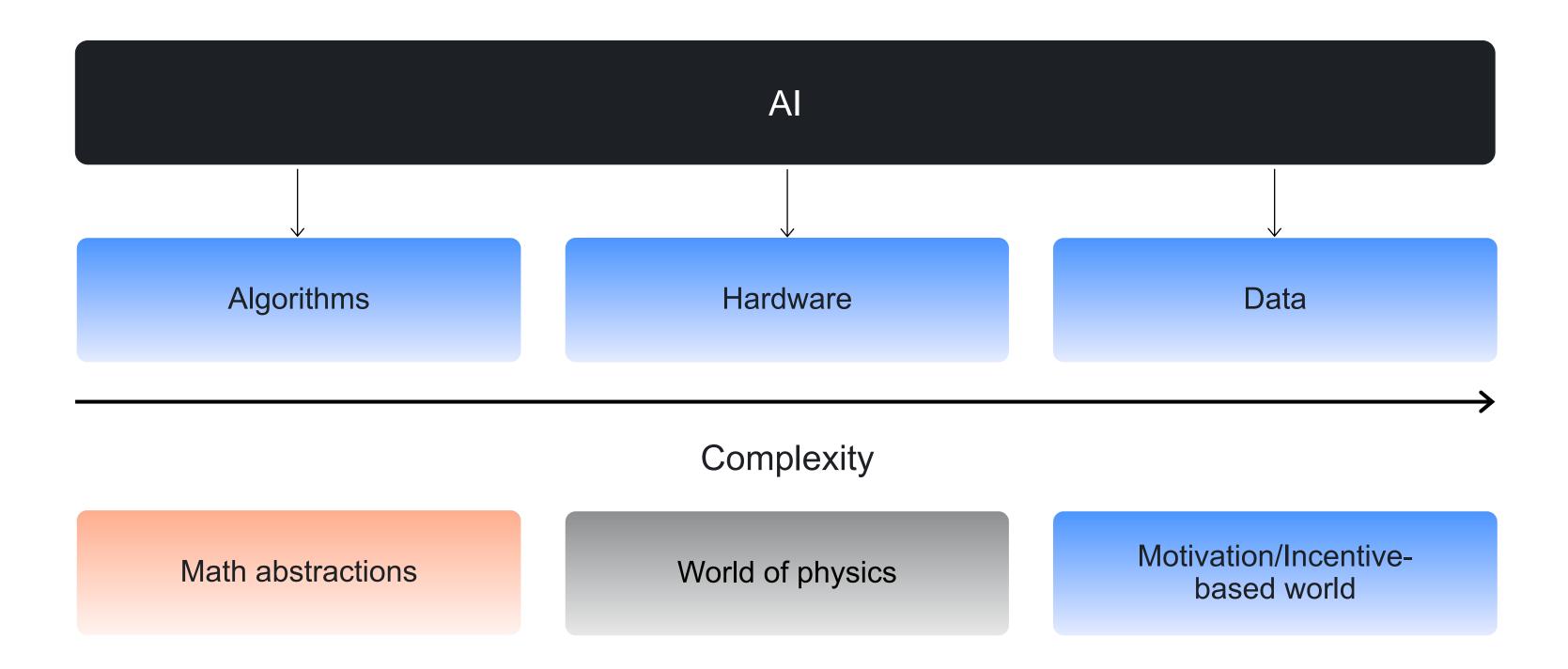
Three pillars of Artificial Intelligence (AI)



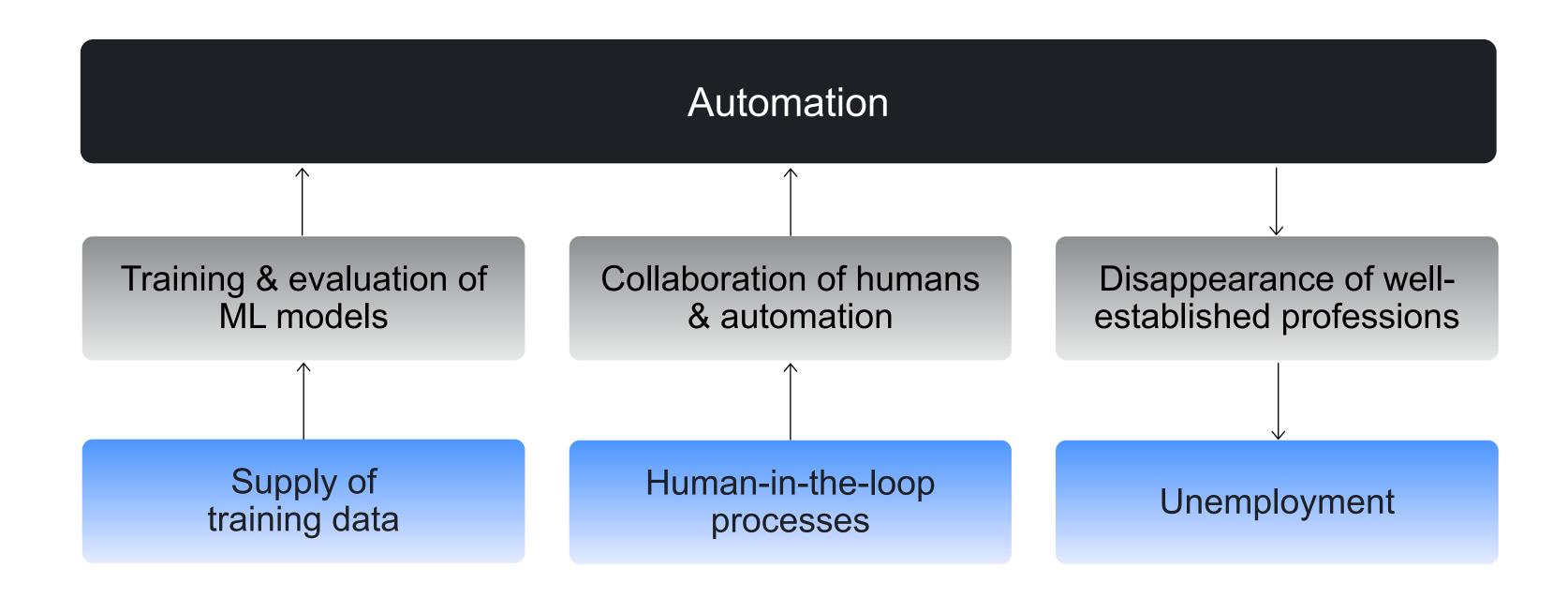
Three pillars of AI: next revolution



Three pillars of AI: the order is natural



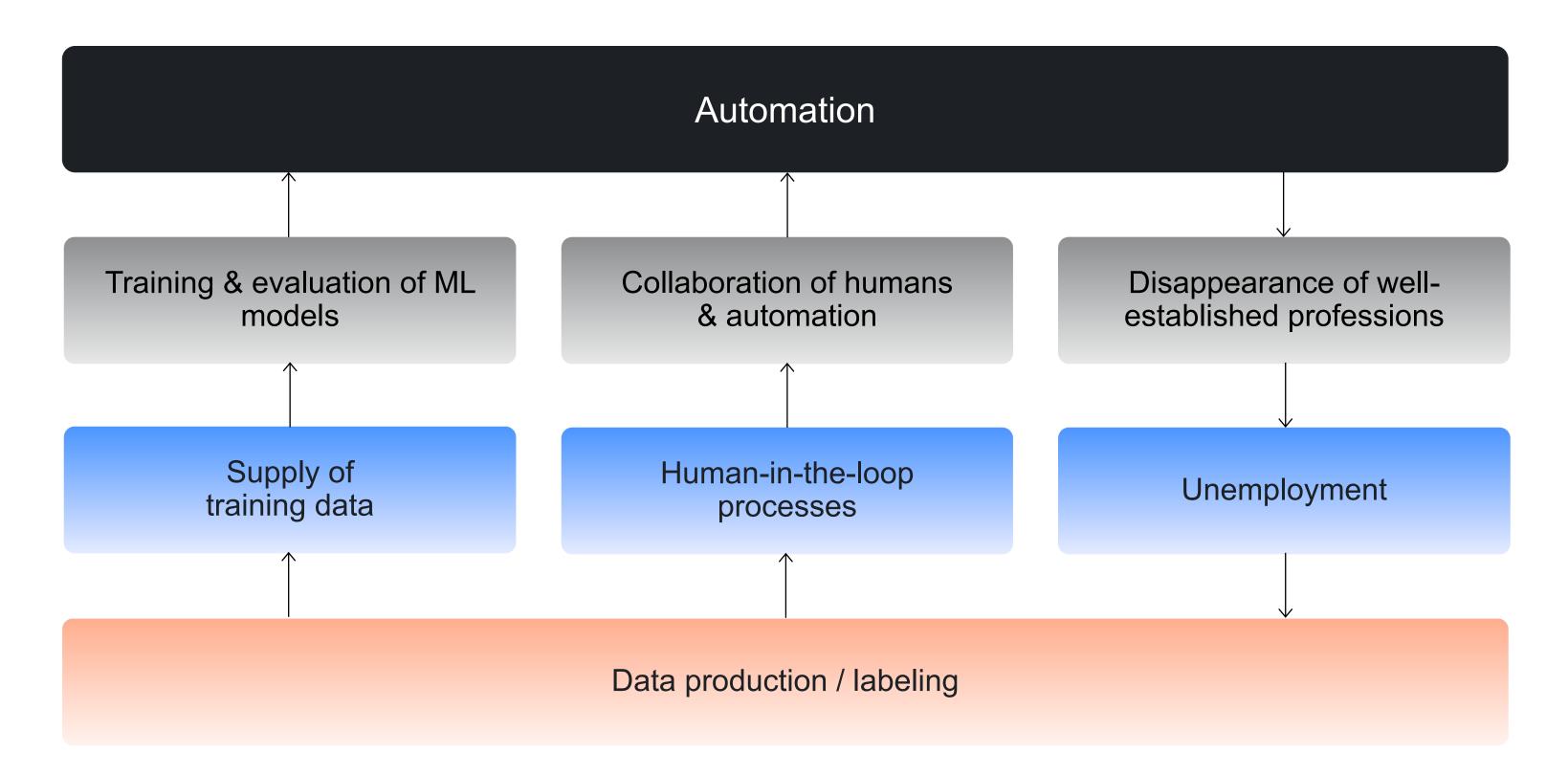
Long-term trends



Automation: pitfalls for humans

- ▶ Disappearances of well-established mass professions
- ► The ways how data production / labeling are organized

Automation: pitfalls meet each other



SUMMARY: Requirements from two sides

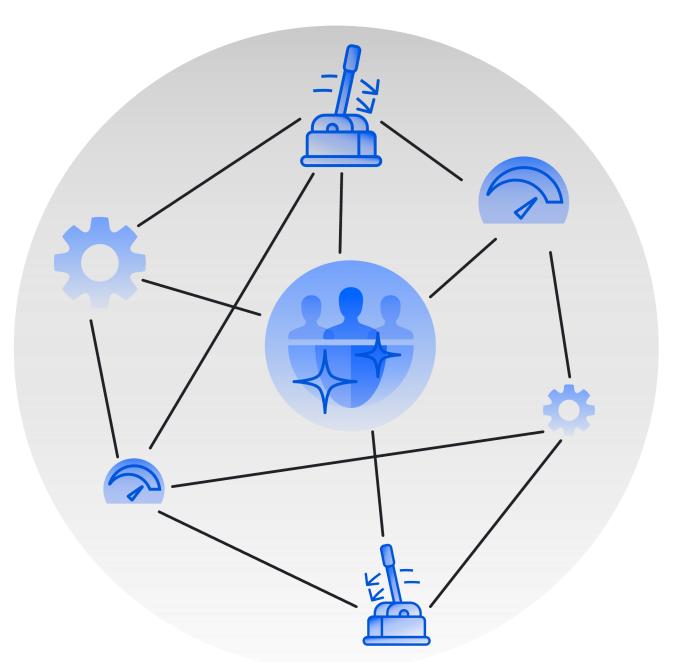
Majority of data-driven web services and products require training data labelled by human (annotators)

...at a large scale



REQUEST-1: From community of industry engineers

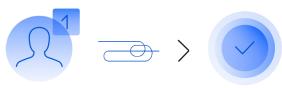
Requirement for a layer that allows work with tasks for humans as with yet another computational cluster



Most popular non-engineer-oriented approaches

In-house "expert": managing people

Direct managing in-house crowd



- ► Easy to setup
- ► Expensive

- ▶ Unmeasurable
- ► Impossible to scale

BPO / vendor

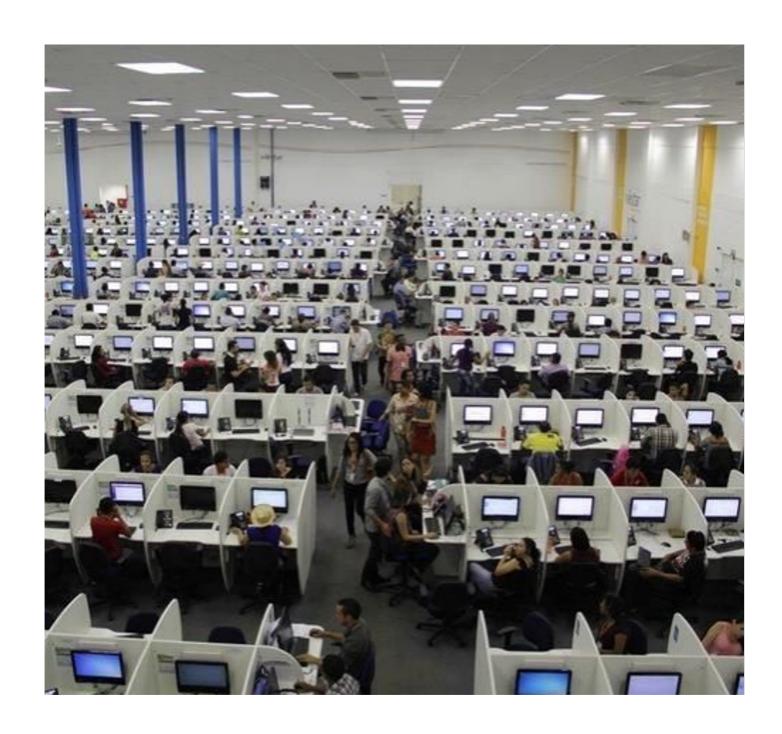
Access to crowd via third-party BPO who manage them

- ► Quick access to crowd
- ► Expensive

- ▶ Unmeasurable
- ► Hard to scale

20th century — style management

- Routine tasks
- Regular work
- No ability to choose tasks



It can be different

- ► Flexibility to choose from hundreds of tasks
- No requirements in regularity
- Switch to another task when bored

REQUEST-2: From community of data annotators

- Prefer freedom in terms of place and time
- Doubt the availability and choice of tasks
- Need fair and ethical task assignment
- Need fair compensation and growth opportunities

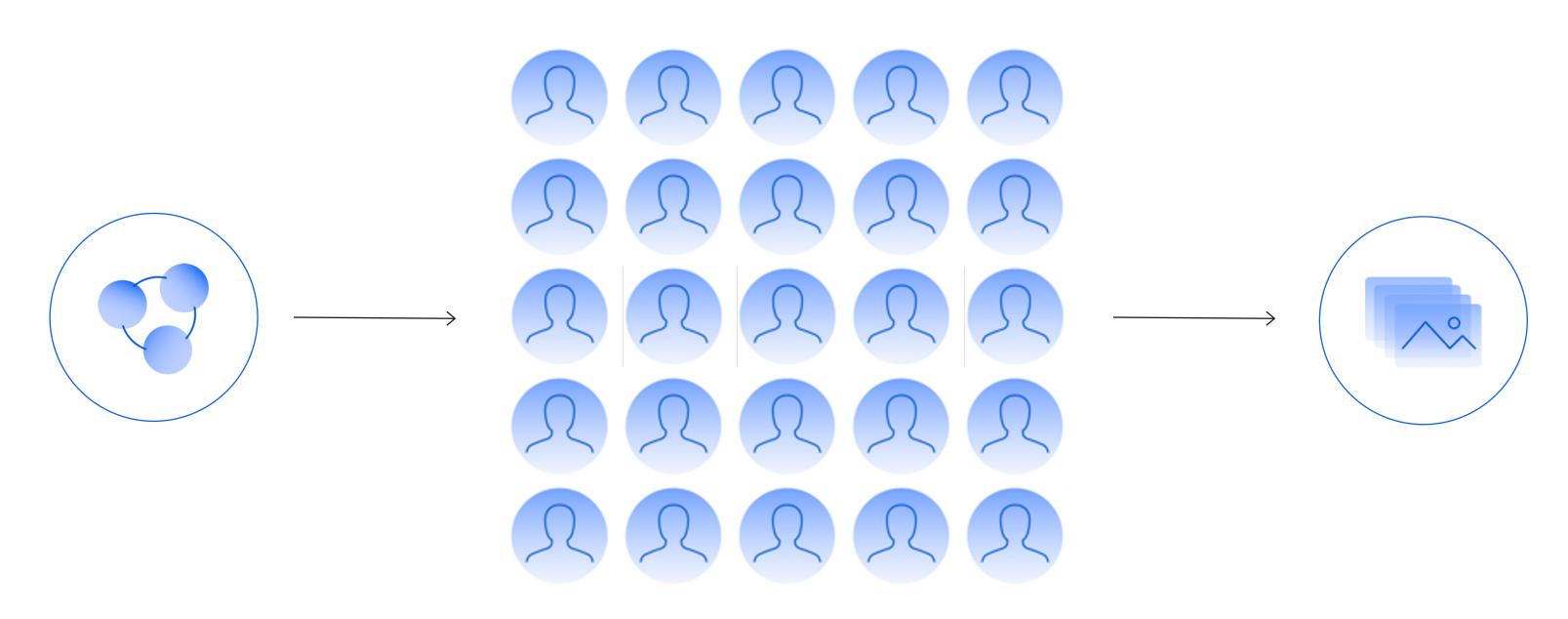
Key challenge

Address both requirements by properly organizing data production.

Is crowdsourcing the solution?

Crowdsourcing as a powerful technology for the data-driven era of the Web

Crowdsourcing: specific way to design a business process



Huge task

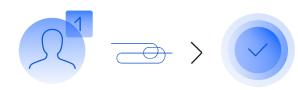
Cloud of annotators

Result

Crowdsourcing as engineer-oriented approach

In-house "expert": managing people

Direct managing in-house crowd



- ► Easy to setup
- ► Expensive

- ▶ Unmeasurable
- ► Impossible to scale

BPO / vendor

Access to crowd via third-party BPO who manage them

- ▶ Quick access to crowd
- ► Expensive

- ▶ Unmeasurable
- ► Hard to scale

Crowdsourcing

Technologically managing crowd as yet another computing power

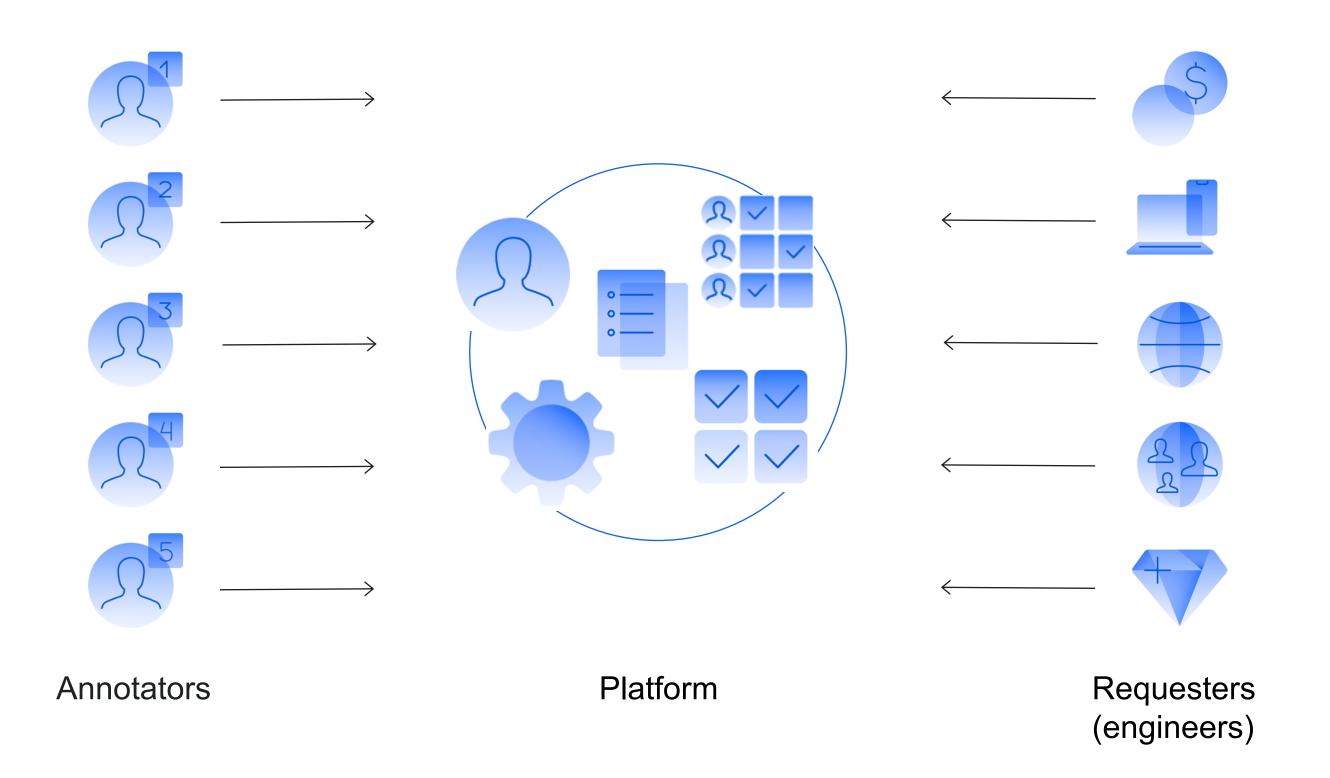
- ▶ Measurable
 - ▶ Scalable

- ▶ Manageable
- ► Requires advanced tech

Crowdsourcing can provide maximal flexibility to annotators if

- On a platform side, efficient tools for quality management are available for a requester-engineer
- Requester-engineer knows how to build smart crowdsourcing pipelines resistant to single annotator's mistakes

A crowdsourcing platform: two-sided market



Open crowdsourcing platforms: examples

- ▶ Toloka
- Amazon Mechanical Turk
- ClickWorker

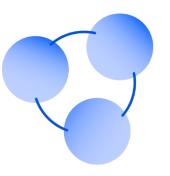
Pros of crowdsourcing platforms

24/7
Continuous
data labeling

Variety of skilled performers

Vast region coverage

(40+ of most of languages and 100+ countries)



Ongoing processes

State-of-the-art crowdsourcing platforms offer

- 1. Self-service: Direct hands-on access to do changes and improve processes
- 2. Offer Python libraries that allow work with human processes in the same code base and environment as with algorithms and ML models
- 3. Ability for easy integration via API
- 4. Robust infrastructure, i.e., fault-tolerant high-load system for processing of millions of tasks per day

Methodology behind efficient crowdsourcing

Choose the crowd

Language & Region

Age

Gender

Device & OS

Individual quality rating

Subject matter experts

Train the crowd

Training and practice

Testing skills

Skilled annotators

Quality-based pricing

Control quality

Behavioral checks

Anti-robotic tools

Hidden control tasks

Consensus of multiple users

Verification of assignments

Get high-quality results

System-level antifraud

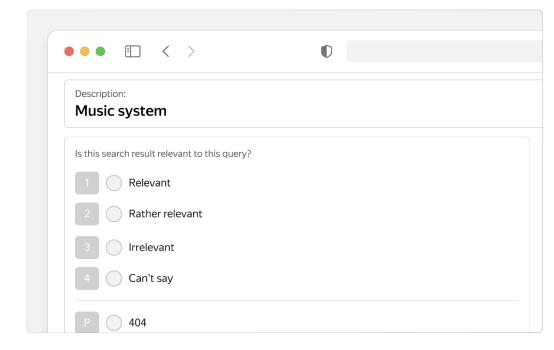
Multiple aggregation models

Results-based performer selection

Real-time insights

Crowdsourcing examples: use cases to improve search relevance

Product + search query



Category + search query

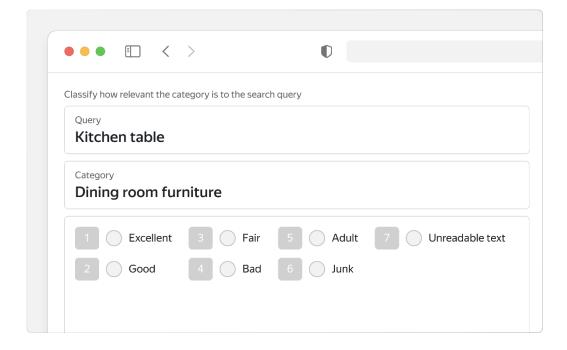
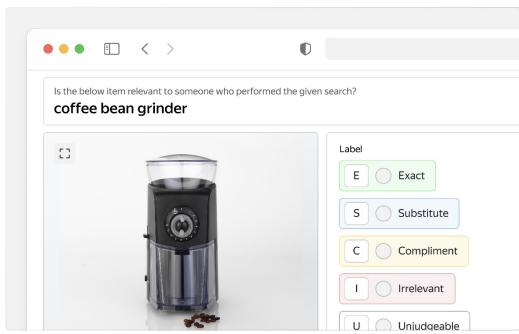


Image + search query

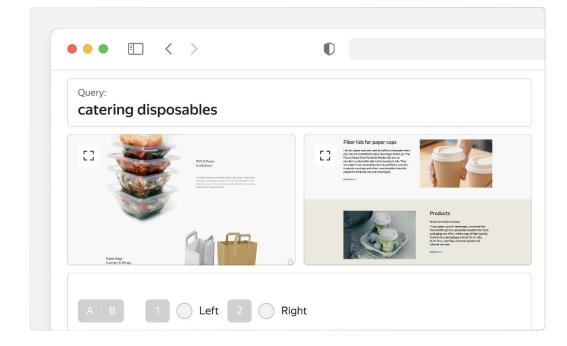


Filters + category

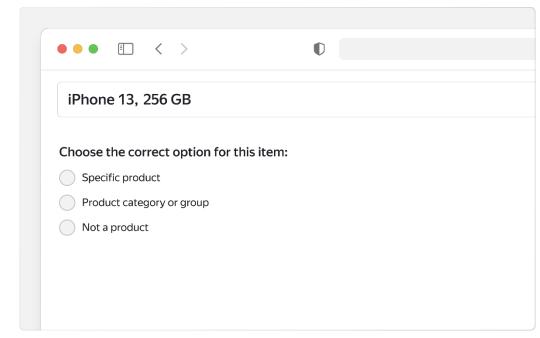
• • •	· (>	0	
Classify	filter relevance to t	he product category		
Filter hig l	n heel			
Categ Wo l	ory nen's shoes	5		
S	Google first te	ext D Google	e second text	
1	Excellent	3 Fair		
2	Good	4 Bad		

Crowdsourcing examples: use cases to improve search relevance

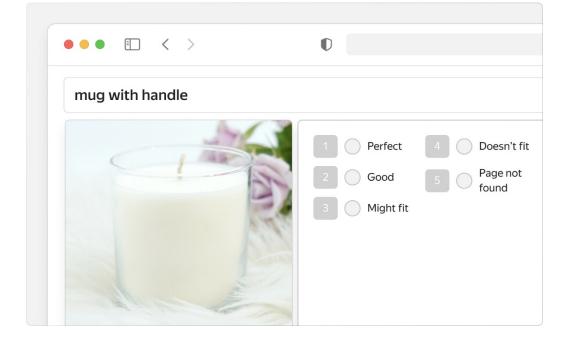
Side-by-side comparison of search results



Classify type of search query (broad vs narrow)



Identify spam or irrelevant matches

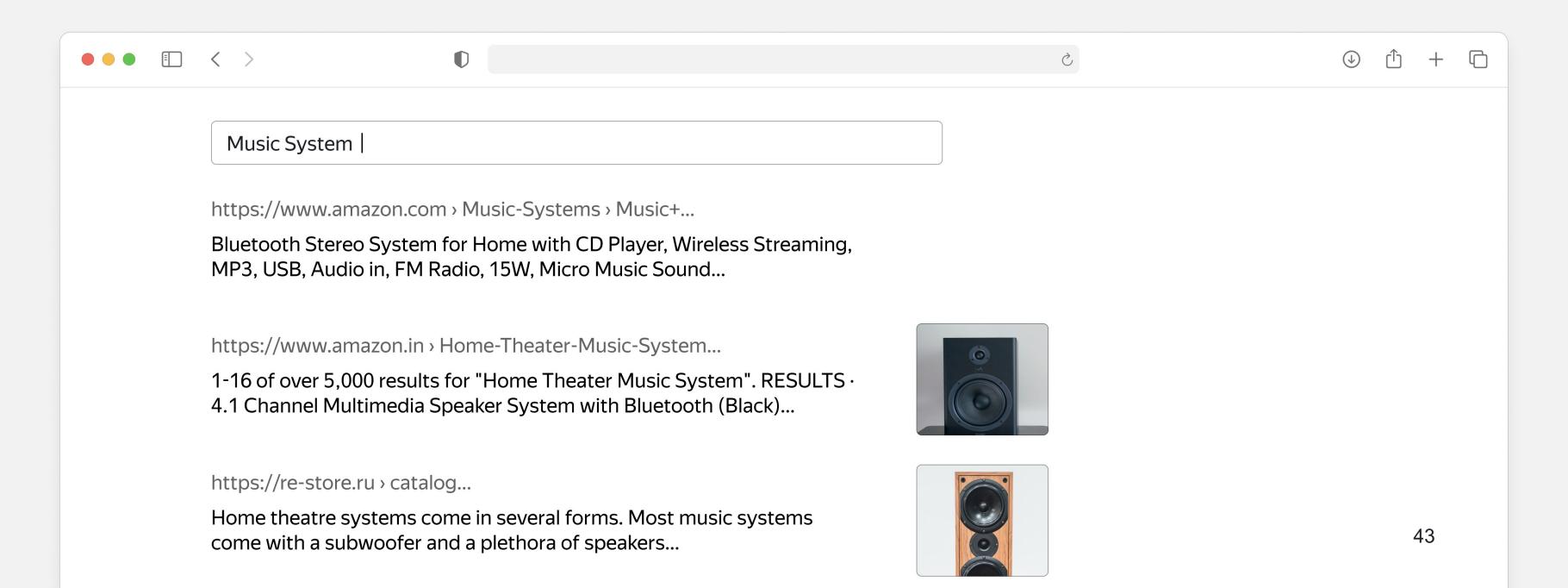


Why this tutorial? Practice!

We will learn on the example of ranking and offline evaluation

(however, the learned skills can be easily applied to other web services and applications)

Evaluation of a ranking



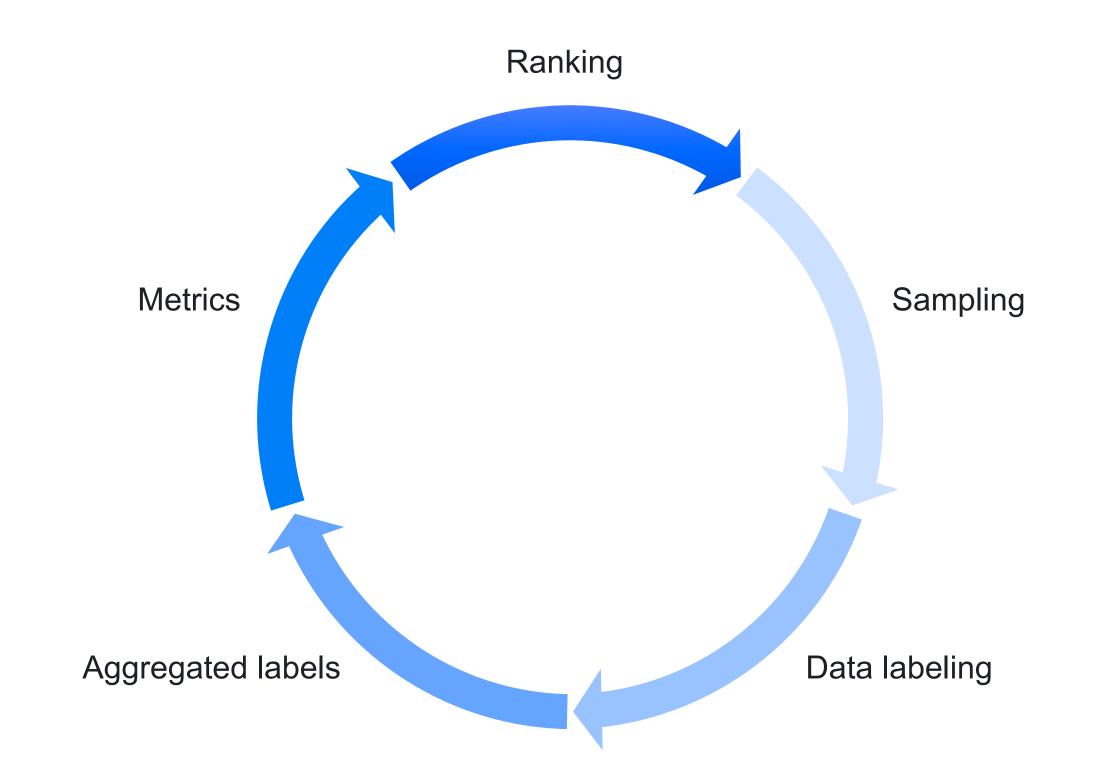
How can crowdsourcing be used?

As the main instrument for measuring context relevance and ranking ads

As a source for building large datasets for ML models (training, validation, test)

As a tool for monitoring ML solutions

Human-in-the-Loop Pipeline for Offline Metrics



Why crowdsourcing?

You can adapt to:

- ► The type of content (text, video, links, images, etc.)
- ► The language of the content
- Search results representation on different types of devices
- ► The fast-changing people's needs
- ► The emerging content

Learning outcomes

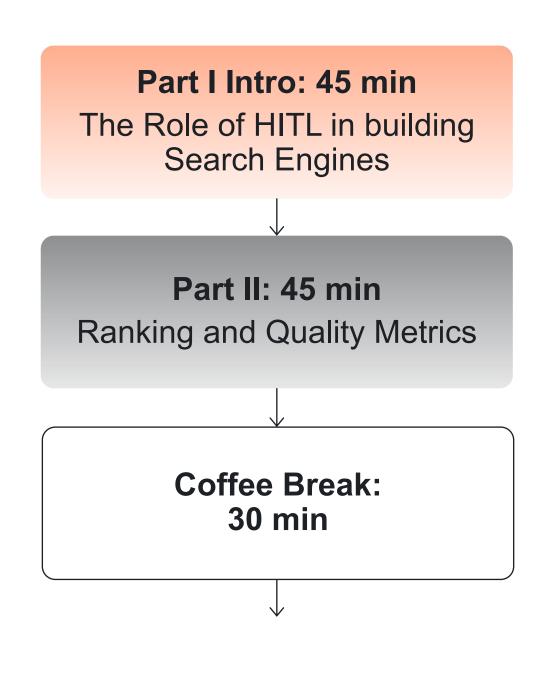
Theory

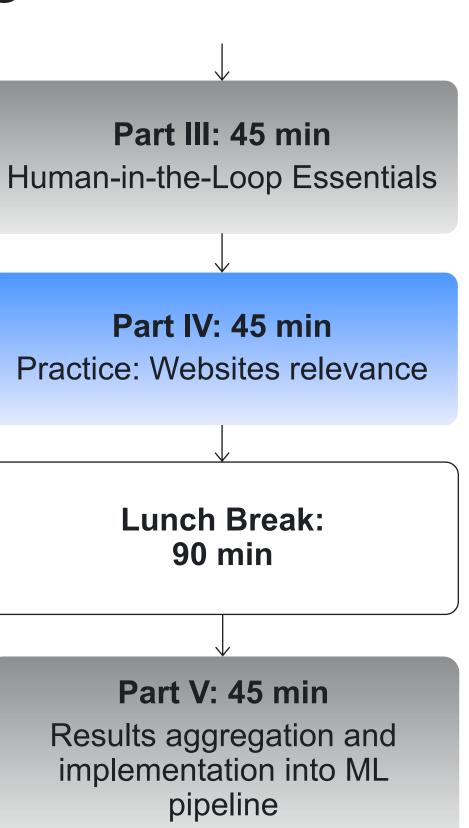
- Offline approach for ranking evaluation
- Use crowdsourcing for industrial applications

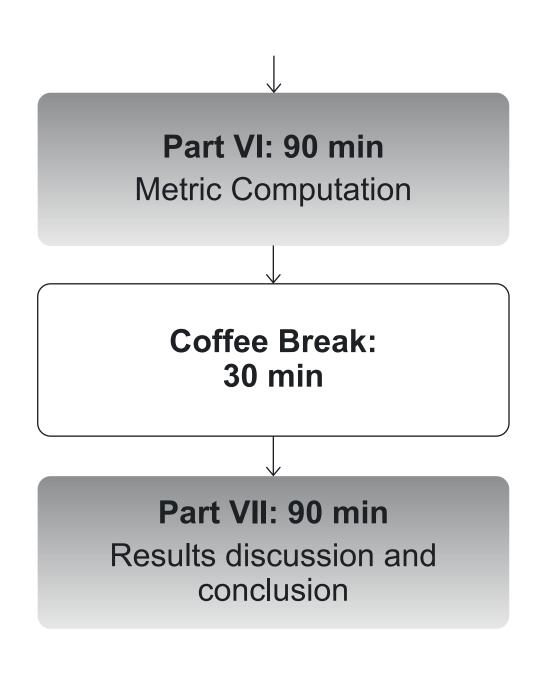
Practice

- Build scalable data labeling pipelines
- Run crowdsourcing projects with real annotators
- Program Human-in-the-Loop via public Python libraries (Toloka-Kit)

Tutorial Schedule





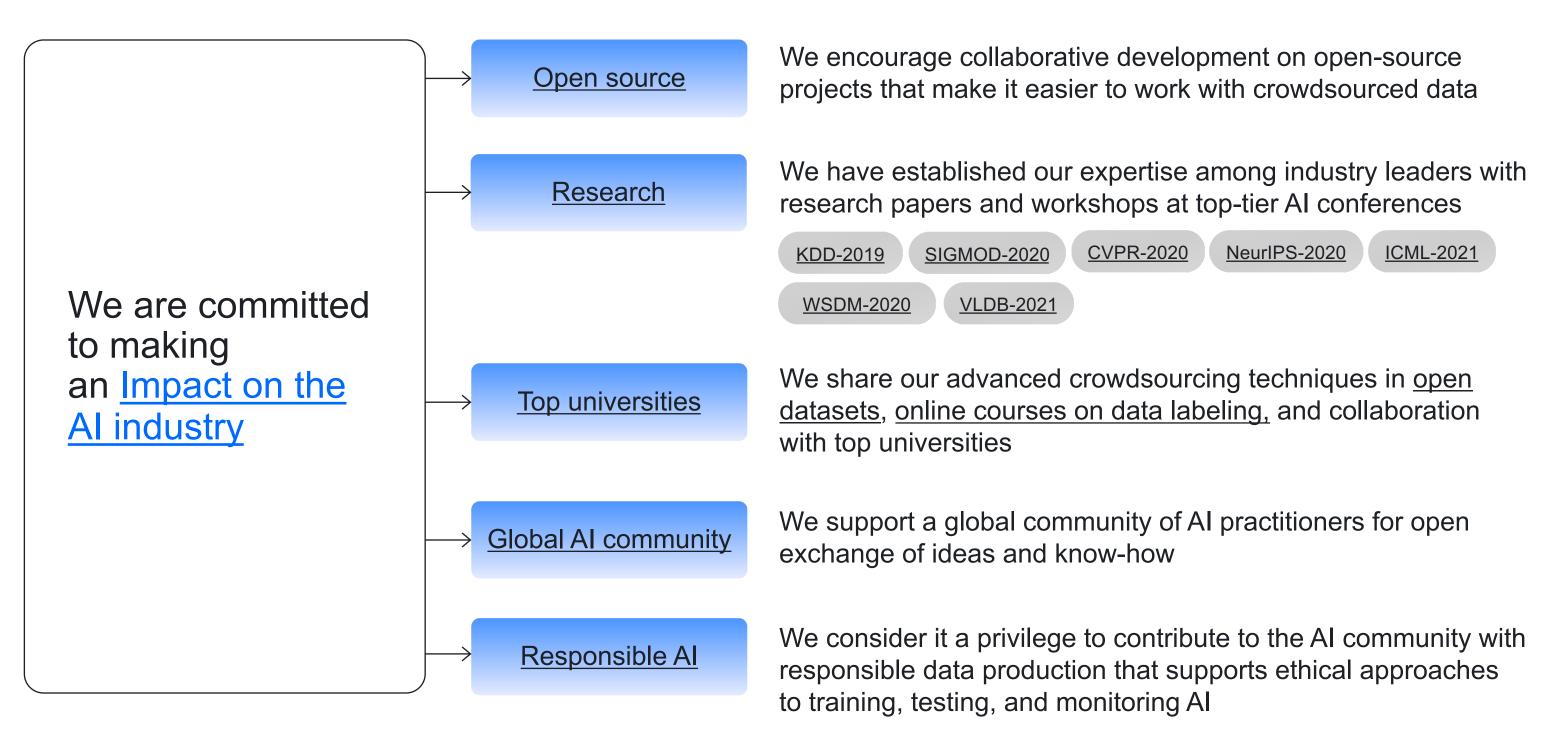


Toloka Research Grants Program

- We encourage the use of crowdsourcing for research purposes
- ➤ Recipients of the grant are awarded up to \$500 in credit to fuel their research

https://toloka.ai/grants/

Our team helps the Al industry

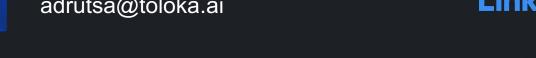


Join our Slack: icwe tutorial channel

Alexey Drutsa

deputy CEO, COO at Toloka

adrutsa@toloka.ai



https://toloka.ai/events/icwe-2022/

https://www.linkedin.com/ company/toloka/

https://twitter.com/tolokaai

https://tolokacommunity. slack.com/ssb/

https://github.com/Toloka